

D8.9 Educational Material for University Studies

Innovative concepts for energy saving refurbishment in historic buildings

Alexandra Troi, EURAC research

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 260162

This document reflects only the author's views. The European Union is not liable for any use that may be made of the information contained therein.

Guiding principle

Presentation 2

Author: Alexandra Troi

Partner: EURAC research (EURAC)

University course: Darmstädter Ingenieurkongress - Bau und Umwelt

Date: 12-13.03.2013

Place: Technische Universität Darmstadt, Fachbereich Bauingenieurwesen und Geodäsie

Title of the lesson: "Innovative Konzepte der energetischen Sanierung im Baudenkmal"

Description of the contents: The energy requirement of a historic building can be substantially reduced finding the right solutions and implementing the high quality. This is the guiding principle in the European research project 3ENCULT "Efficient Energy for EU Cultural Heritage": for the energy retrofit of a historic building the multidisciplinary exchange between all stakeholders starts with a comprehensive diagnosis of the status quo, supports the development of solutions and guarantees performance. Methods to be applied include (i) conservation inventory system (as e.g. "Raumbuch") which are further developed in order to well interface with energy issues, but also (ii) conservation related non or minor destructive testing (NDT) technologies (as e.g. again IR-thermography, ground penetrating radar, ultrasonic tests) as well as (iii) energy performance related diagnosis (as e.g. again IR-thermography, blower door test, heat flow measurements). Also, the works work done in the Waaghaus in Bozen and in the Höttinger Schule in Innsbruck are presented. The works regard internal insulation, replacement of windows, air tightness, moisture at beam ends, ventilation, air flow balancing, daylight and artificial lighting optimisation.

Name of the files: WP8_D8.9_20131007_EURAC-Lesson 1 en and WP8_D8.9_20131007_EURAC-Lesson 1 de

Guiding principle

Also in historic buildings the energy demand can be reduced considerably – if an interdisciplinary team looks for the right solutions for the specific building and implements them with high quality.

From diagnosis to monitoring of success

- Diagnosis
 - Conservation value
 - Potential damage
 - Energy related aspects
- Design
 - Looking at the building as a whole
- Documentation & monitoring

Planning with a view to the entire building

Diagnosis

- Conservation value
- Potential damage
- Energy related aspects

3encult

Design

- Looking at the building as a whole
- Documentation & monitoring

Denmark

Bologna

Work in a interdisciplinary team

				Role				
			Case	"Technical	"Urban	"Conser-	"Dissemi-	
			study	solutions"	context"	vation"	nation"	
EURAC research	IT	Coordinator, WP1 & WP8 lead	x	x				
The Royal Danish Academy of Fine Arts	DK	WP2 lead	x		x			
IDK - Institut für Diagnostik & Konservierung an Denkmalen	DE	WP2 co-lead				x		
Universität Innsbruck	AT	WP3 lead	x	x				
ARUP	UK	WP3 co-lead		x				
Universität Stuttgart	DE	WP4 lead	x	x				
Cartif	ES	WP4 co-lead	x	х				
Bartenbach Lichtlabor	AT	WP5 lead		x				
TU Dresden	DE	WP6 lead	x					
Institute for Building Climatolog	/			x				
Centre of Expertise in Urban	Build	aing Research			x	x		
Comune di Bologna	IT	WP6 co-lead	x		x			
Passivhaus Institut	DE	WP7 lead		x				
TNO	NL	WP7 co-lead					x	
Alma Mater Studiorum Università di Bologna	ІТ	diagnosis & monitoring	x					
DICAM						x		
DIES				x				
Artemis	IT	diagnosis & monitoring				x		
Grupo Unisolar	ES	solar solutions		x				
Menuseries Andre	FR	window solutions		x				
Remmers	DE	insulation solutions		x				
ATREA s.r.o.	CZ	ventilation solutions		x				
youris.com	BE	dissemination					x	
ICLEI Europe	DE	dissemination			x		x	
REHVA	BE	dissemination					x	

Case studies Overview

3ENCULT workshop Bruxelles - Alexandra Troi

Dialogue and develop together

"Raumbuch" integrated with energy issues

- Monuments are unique → any change has to be prepared by a comprehensive analysis
 - information to the historic materials and constructions,
 - potential existing damages as well as
 - strong and weak points from energy perspective

Collect and **visualize** in a structured way any information needed for the diagnosis (descriptions, plans, photographs, drawings of details, results of non or minor destructive testing, monitoring data as well as calculations and models).

- Architects, conservators and engineers
 - \rightarrow "move" through the building on different levels of detail
 - \rightarrow information for constructive discussion at their hands.

"Raumbuch" integrated with energy issues

Usefulness goes beyond diagnosis!

- development of solutions,
- comparison of different options
- selection of the best one for the specific building will profit from the
- structured presentation and
- simultaneous look at both conservation and energy aspects
- not only on an aggregated level, but down till the single room.

Navigation structure

Navigation structure

Fotos & maps for orientations

Parallel descriptions in the middle part

Additional documents

... and their preview

research

Material and construction catalogues

date/time: Mon Feb 11 2013 05:25:01 GMT+0100

ProDenkm

... with detail drawings

date/time: Mon Feb 11 2013 05:25:01 GMT+0100

ProDenkm

... and picture

							3encult	
Home	Navigation	Archives C	atalogs Eva	luation Ex	tras Log	out		
Construction Eler	Construction Element Area		U-value (calculat	ed) Comme	nt Entered	by Entr	y date	
D01_Test room_Co over Portici	eiling 1	467	1.34		all Dagmar Exner	• 2012-12-13	22:31:34	
D01_Test room_Ex wall	terior 2	0	2.33		Dagmar Exner	2012-12-13	22:45:37	
Construction elen	nent details			Construction ele	ment sketch	Photo		
Construction el D01_Test room_ Total Thickness 467 U-value data	lement: Ar Ceiling over Portici 1 s (mm): Comment: I 2	rea: Entered by: Dagmar Exner Date: 2012-12-13 22:31:34						
U-value (calo 1.34 RSI: Downward(0.1	culated): U-value (me 0 RSE: 7) Thermal Resistance	e asured): e of the exterior surface(0.04)					
			data Wisson Mara Eab /	1 2012 05-25-01 CMT+04	20			

date/time: Mon Feb 11 2013 05:25:01 GMT+0100

ProDenkm

Standard solution can not exist in historic buildings

 \rightarrow How the exchange described above and the thinking beyond typical applications can lead to innovative solutions will be presented in the following two examples.

3encult

Public Weigh House Bolzano/Italy

Windows in the building stock ...

... are usually

not thermally insulating

e.g. CS1 Waaghaus / Bozen:
→ 33 kWh/m²
= 11% of total transmission losses

not airtight

e.g. CS1 Waaghaus / Bozen: → ~40 kWh/m²

What to do?

- original windows with heritage value
- \rightarrow restoration of the existing window
- if original windows have already been replaced – as e.g. in 3ENCULT CS1
- new energy efficient and aesthetically fitting window

This was a challenge for...

3ENCULT partner Menuiserie André together with their development expert Franz Freundorfer

... in strong collaboration with the consortium!

1st meeting at the Weigh House

With the director of the local heritage office Mrs. Kofler Engl
To clarify the specific requirements of the building
But also to understand "typical" requirements

- The window size is typical for a baroque window
- Since nearly all windows were exchanged in the middle of the 20th century and there were no information available about the original windows, the heritage office recommends a typical local "baroque" window:
 - Two sashes, each with two subdivisions
 - Both box-type and coupled window are possible
- Documents and drawings for research

1st meeting & workshop in Bolzano

Workshop in Bolzano

1st prototype for CS1, the Weigh House

Efficiency of the 1st prototype

Efficiency of the 1st prototype

Feedback from conservator

"I do have overall a positive impression as regards frame & sash bar dimension as well as subdivision & proportions."

The optic of the outer glazing seems to me exaggerated, both the too irregular reflection from outside, and distortion from inside. And I ask whether a 3-pane glazing for Bolzano climate is really needed.

Frau Dr. Waltraud Kofler Engl

Further development

Using thin glass→ 2mm!

- 2+8+2+8+2
 = 22 mm
- 4+12+4 = 20 mm
- Makes the construction even lighter and more delicate
- Opens new ways for the refurbishment of windows

Résumé André/Freundorfer

- Energy efficiency and historic buildings are a good match!
- Preservation of the historical substance and the aesthetics of protected buildings have first priority
- If exchange \rightarrow then choose class phA!
- Box-type or coupled window?
 Depends on the regional context and the installation.
- Calculation of the psi-value (thermal bridge) of the installation!
- There is no standard solution
 → but there are design principles for project-based solutions
- Both monument preservation and "passive house" support the craft

Active overflow ventilation in the Höttinger school of Innsbruck

Höttinger School Innsbruck / Austria

1929-29131, Franz Baumann & Theodor Prachensky Typical for a school of early modernism

In 3ENCULT:

University of Innsbruck, Architect Gerald Gaigg

hauptfront (Fürftenmeg) Photo Dr. R. Deiner

Fresh air demand ...

... can not be guaranteed with window ventilation between one lesson and the other

- Windows are opened also during lessons
- B heating demand
- 🙁 comfort

Fresh air demand ...

... but which system?

Central?

- \rightarrow standard with heat exchanger in cellar
- B horizontal & vertical ducting
- B holes in ceiling
- \rightarrow vertical ducting
- © no horizontal ducting in the corridor
- ⁽³⁾ more holes in the ceilings
- Decentralised?
 - \rightarrow one ventilation system per class room
 - 😊 less ducts
 - $\ensuremath{\mathfrak{S}}$ two holes in the facade per room ...

What "offers" the building?

- central staircase
- large corridors
- classrooms that are connected to the corridor

 \rightarrow Use the potential of the building!

fresh air reservoir in the corridors

Corridors as fresh air reservoirs

Active overflow

Active overflow

Air supply in the classrooms over textile hoses

Sencult

Fresh air, exhaust air and heat recovery

- Fresh air reservoir in the corridors
- Active fans for air exchange with the classrooms, even with closed doors → active overflow
- Air supply in the classrooms over textile hoses
- Corridor is supplied over the staircase with fresh air from the heat recovery unit on the roof
- Exhaust air over ascending pipes of toilets and wardrooms

Fresh air, exhaust air and heat recovery

- Fresh air reservoir in the corridors
- Active fans for air exchange with the classrooms, even with closed doors → active overflow
- Air supply in the classrooms over textile hoses
- Corridor is supplied over the staircase with fresh air from the heat recovery unit on the roof
- Exhaust air over ascending pipes of toilets and wardrooms
- \rightarrow Nearly no ceiling openings necessary
- \rightarrow No suspended ceiling in the corridors

... further solutions

Decentralised ventilation

 minimal invasive and nearly invisible mounting of the counter flow heat exchanger in the parapet

Decentralised ventilation **Hegencult**

- fresh air through slit below window sill
- exhaust air via perforated plate in front of window post

... in conclusion

Monument preservation and climate protection are not a contradiction

- both feel committed to sustainability, which includes the preservation of the building as a living space as well as the preservation or our resources.

Good, innovative and heritage compatible solutions can be found

- if the parties exchange,
- if they appreciate and complement each other in their respective expertise
- and consider the building in its entirety
- on the basis of a comprehensive analysis and diagnosis

Tank you for the attention!

alexandra.troi@eurac.edu