

Historic buildings and city centres – the potential impact of conservation compatible energy refurbishment on climate protection and living conditions

Alexandra Troi, EURAC research

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 260162

This document reflects only the author's views. The European Union is not liable for any use that may be made of the information contained therein.

Key question

Is it reasonable to invest – thoughts and money – in the energy refurbishment of historic buildings?

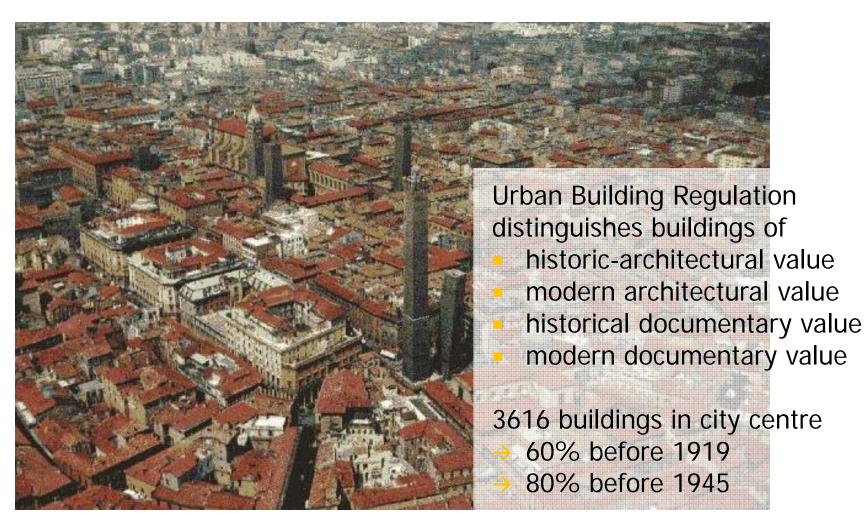
What is the potential impact in terms of

- energy saving
- \rightarrow CO₂ emission reduction
- → comfort
- → societal aspects

Definition

→ Denmark→ Bologna

Denmark



Bologna

Definition

→ Denmark
→ Bologna

Buildings dating before 1919

Certainly the **big part of this building stock** makes part of the **cultural heritage** of European countries und gives **identity** to European cities, villages and public spaces.

Buildings built 1919 - 1945

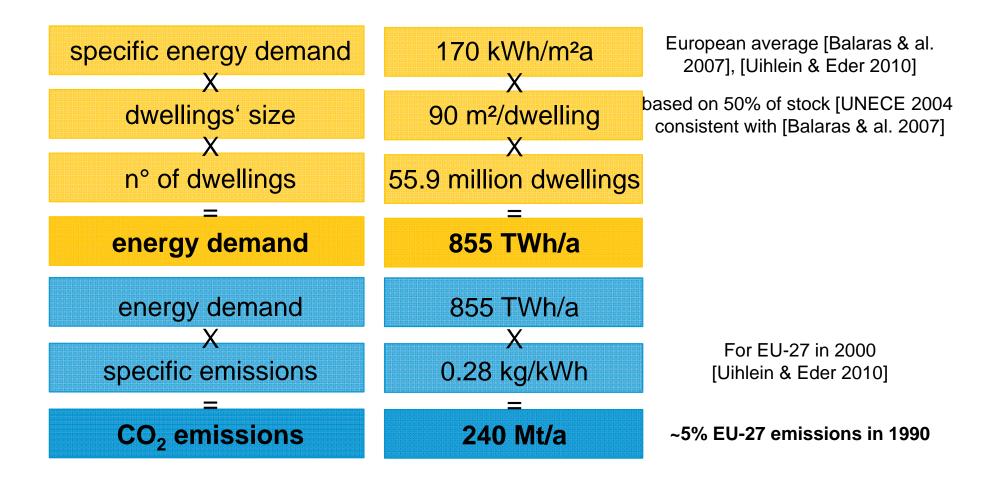
Even if much less buildings from this latter epoch than from the building stock before 1919 are listed, they form a part of the city-centre and cityscape and retrofit interventions should take account of the specific demands in terms of aspect preservation.

Statistics

dwellings %

dwellings n°

people


Variation

Energy demand & CO₂ emissions

Examples for reduction in energy demand

→ Factor 4 for
 reduction in energy
 demand
 assumed as feasible
 value

Renewable Energy House 0 kWh/m²a (PE) Reduction Factor !

Foto REH brochure

T

energy saving – factor 4

- 640 TWh/a (Europe)
- 11'500 kWh/a (dwelling)
- CO₂ emission reduction
 → reduction of 180 Mt/a (Factor4 applied also here),

i.e. 3.6% of EU-27 1990 emissions depends very much on energy source, can also be higher!

Comfort

- Higher (possible) air temperature
- Higher surrounding surface temperature
 - \rightarrow lower air temperature with same comfort
- Less air draught
 - \rightarrow neither actual outdoor air entering through windows
 - \rightarrow nor cold air streams under cold windows
- Better air quality (CO₂ level, odours, particles …)

Societal aspects

- Reduce energy bills → avoid fuel poverty
- Support with use & maintenance of historic building their long term preservation
- Sustain identification of inhabitants with their heritage as common value
- Keep/re-establish city centres as high quality, attractive living areas
- Avoid need for new infrastructure and soil
- Maintain our cities attractive for high level tourism

Conclusion

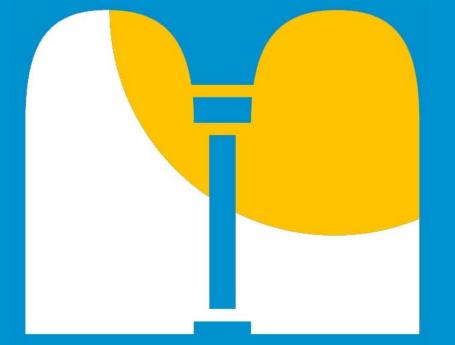
energy saving – factor 4

- 640 TWh/a (Europe)
- 11'500 kWh/a (dwelling)

CO₂ emission reduction

→ reduction of 180 Mt/a (Factor4 applied also here),

i.e. 3.6% of EU-27 1990 emissions depends very much on energy source, can also be higher!


comfort

 \rightarrow higher surrounding temperatures and less draughts

societal aspects

 \rightarrow lower energy costs, more attractive historic city centres

Alexandra Troi alexandra.troi@eurac.edu