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• Transient
– Usage of dynamical boundary conditions (external und internal climate)
– Thermal and hygric inertia of construction is considered

• Hygro-thermal
– Heat conductivity and storage
– Moisture transport (vapour and capillary conductivity) and moisture

storage

• Building elements
– Materials and systems/constructions
– Constructional details

• Simulation
– For analysis (expertises) and prediction (feasibility study/optimisation)

Basic of simulation 
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Temperature

Humidity

internal

Radiation (short and long wave) 
Temperature

Humidity 
Wind 
Rain
Air 
pressure 
Occultation

external

Transient transport processes in capillary-porous building materials

Transport of

Heat

Air

in porous 
building materials

Moisture

Basic of simulation 
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Basic knowledge for the use of simulation software

• Material properties
• Conserved quantity
• Transport processes
• Initial conditions
• Boundary conditions

• Mathematical method
•
•

Space discretisation 
Time steps Precision

Physical state equations

Numerical solving method

Basic of simulation 
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Mathematical basics and nomenclature

Einsteins’ summation rule:

Usage for partial derivative:

jk   jk
k

For cartesian coordinate systems: k  x, y, z
   ,  , 
xk x y z

Usage of direction index implicates sigma sign

m  mt, xk 

Example:

xk x y z
m  m  m  m

Conserved quantity is defined in dependency of 
time and space

Partial derivatives are summed

Physical basic equations and
models

8



9

t xk  xk 

Q     
 Q  Q t, x  with  k  and

Change of internal energy in time (only heat storage):

dry  T
Q   
t t

c

  t, x k

Q



J / m3

C

Internal energy density

Temperature

Important material parameter:

dry

cT



kg / m3

J /
kgK
J / smK W / mK

Density of dry materials 
Specific heat capacity 
Heat conductivity

Physical basic equations and
models
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Temperaturprofile

Location [m]
0.40.350.30.25

Brick wall
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Anfangsbedingung
10 min
1 Stunde
4 Stunden
1 Tag

MiWo

10 min
1 hour

4 hours
1 day
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6

4

2

0

Initial cond.

Transient heat conductivity – till achievement of steady-state conditions
Temperature profiles

Physical basic equations and
models
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Storage term and heat capacity are irrelevant for stationary state

At transient processes the storage term controls how quick the 
system responses to boundary conditions:

Q  0  
xk  xk t

  
 

Heat fluxes constant: q     const
x

Transient heat conductivity – till achievement of steady-state conditions

Steady-state conditions = no change of conservation quantities in time anymore

• high heat capacity
• low heat capacity

– slow achievement of stationary conditions
– quick response

Physical basic equations and
models
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 v,k w,k 
xk

w    g  g
t with  k w  w t, x

w 
gv 

gw

pv

kg / m3

2

Water mass density Vapour
flux density Capillary water flux 
density

kg / m 
s kg / m 
s

2

Water mass balance (transient conservation equation for moisture in building
components):

gv

gw

Vapour pressure gradient Vapour diffusion

w

Water content difference capillary conductivity

Physical basic equations and
models
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Gas mass balance (transient conservation equation for gaseous phase in building components):

ggc,k  ggg ,k g 
 

t xk
with g   g t, xk  and

g

ggc

ggg

3kg / m Gas density
Convective gas flux density 
Gas flux density due to gravity

kg / m2s 
kg / m2s

g   g T , w, pg 

Physical basic equations and
models

13



14

x

Vapour diffusion:
v,air pv   Dv pvgv   RvT x

Capillary water transport:

 x
pgw  K x

r

2 cos
Capillary pressure: pc 
� r

Transport processes and models

Heat flux density: q   

The smaller the pore radius, the 
bigger the traction force and 
therefore the water height in the
capillary tube

Water pressure: p  pc  pg

Pressure gradient in liquid phase induces water transport

 x
K p

g   g g
gc

g
Gas transport: ggg   Kg  gzg

Physical basic equations and
models
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Transport processes and models
Evaporative cooling and heat of condensation

H  3.08 106  J/kgevapEvaporation enthalpy:

Specific enthalpy of water vapour: hv  cT ,v T TRef  Hevap

hw  cT ,w T TRef Specific enthalpy of water:

Enthalpy transport of water vapour is much bigger than of liquid water!

gw gv

although cT ,w � 2cT ,vhv �
hw

gwhw gvhv

Example:

Physical basic equations and
models
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Summary
Conservation equations

 v,k w,k 
xk

w    g  g
t

 w w,k v v,kkxk

Q    q  h g  h g
t

Moisture mass balance:

Energy balance:

Solution of equations

Initial conditions (one for each conservation equation), e.g.: T , T , wor

Boundary conditions (types):

Describes fluxes from surroundings into construction,
z.B. radiation heat flux, Vapour diffusion flux

Neumann (2nd)

Dirichlet (1st) Describes boundary values, e.g. surface temperature

Cauchy (3rd) Describes fluxes and boundary values

Physical basic equations and
models
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Summary
Material parameters and material functions

General parameter:
dry

cT



K

kg / m3

J /
kgK

W / mK

s

Density of dry material 
Specific heat conductivity

Heat conductivity
Water vapour diffusion resistance value 
Liquid water conductivity

Transport parameter:

wpc 
w

3kg / m
Moisture retention curve (MRC) 
Sorption isotherm

kg / m3

Moisture storage parameter:

Physical basic equations and
models
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 qk  0
t xk

1. Transformed original equation:

 qk   0
xk

U 

 t
 


2. Multiplied with function:

Control volume method
Used to transform partial differential equations into systems of ordinary differential
equations

Analytic derivation using the example of heat conduction equation:

U 

 qk  dV  0
xkV

U 

 t  


3. Integrated over a volume:

Presumptions/preconditions:

w  const (= 0-order FEM) and
V

U dV U V t
�

t

The numerical solving
method
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q  dVU   1 
kV V xkt 4. Equation transformed/simplified:

U   1
k k k

A

n A q dA
t V �

 
5. Gauss-Green-Theorem:

 i i k ,i 
U   1
t V i

n A q
 

6. Application for discrete areas:

Control volume method

U  1 Aq  A q 

1 q  q 

l l r r

l r

t V
U 
t x

Example: 1D

with the borders of the volume l = left, r = right

Analytic derivation using the example of heat conduction equation:

The numerical solving
method
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Change of density in the discrete volume = Difference between inflow and outflow

V
Outflow

O
ut

flo
w

In
flo

w

Balancing of conserving quantities (mass + energy)

y

x

Inflow

The numerical solving
method
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Al

qr
Ar

�x

Change of absolute conservation quantities per time = difference of fluxes

U V  t Alql  Arqr  at which Al   Ar   A and V  x A

and for infinitesimal time steps:  ql  qr 
U A
t V

 ql  qr 
U A
t V

hence

Control volume method
Derivation at concrete example: Vql

 ql  qr 
U 1
t x

and

U

The numerical solving
method

22



23

Material macroscopically homogenous 
Isotropic transport properties 
Properties of volume elements, 
representative for the material

Definition of local state variables

l

v

pc

Wassergehalt
Temperatur
Relative Luftfeuchte
Dampfdruck 
Kapillardruck

T

p



Discretisation

Discretisation for numerical solution

V

V

Water content 

Temperature 

Relative humidity 

Vapour pressure 

Capillary pressure

The numerical solving
method
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Discretisation of partial derivation

Example: Heat fluxes between control volumes

Estimation of 1. derivation of function (with fault 2nd order):

f  f (x x) f (x) O(2)
x x

f x2  2 f x3 3 f
x 2! x2 3! x3

f (x  x)  f (x)  x   ...

Taylor series expansions:

qk   
xk



Discrete formulation of heat flux 
Density between control volumes: k

k

q   
x

Alexandra Troi - CNA Trasformare il 
costruito - Numerical simulation

The numerical solving
method
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Numerical solving methods at a glance

xk  xk 

U   
t

  
 

+
Control volume method

+
Discretisation of partial derivations

=
System of ordinary differential equation

(one equation per control volume and conserving quantity)

i1 i   i i1 
i1/ 2 i1/ 2xi1/ 2 xi1/ 2   

Ui   1 
xi t    

e.g. 1D heat cond-
ductivity equation

i i 1i 1

i 1/ 2i 1/ 2

The numerical solving
method
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g  g  1 w  
t V  A  A 

vapour liquid

Extrapolation with constant slope

Polynomial extrapolation

tn-1 tntn-2tn-3tn-4

C
on

se
rv

in
g 

qu
an

tit
ie

s

time

Correct 
result

Numerical Integration
Iterative calculation of solution till
differential equation is fulfilled

Numerical solution
Discretised differential equation (example: moisture mass balance)

Known 
solution

The numerical solving
method
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y Qi , wiVector with unknowns:

System of differential equations:
y  f (t,y)
t

Numerical solving methods at a glance

2 balance equations * n elements = number of equations & unknowns

Solution of equation systems by time integration:

y(t)  y0   f (t,y) dt
t

Simulation software DELPHIN

The numerical solving
method
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Steps – New Project
• Open new project 

template
• Choose memory location 

of the project
• Delphin project name

DELPHIN opens a 
standard template 
(*.dpj).

Choose folder

DELPHIN: Program
operation
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Steps – Construction
• Define type of 

construction, here: 
1D horizontal

• Adjust number of 
material layers in
x-direction

• Adjust thickness of 
different layer in [m]

Only transport in 
x-direction:

The  height (y-direction) 
und depth (z-direction) 
should be 1 m to 
calculate a wall area
of 1m2.

DELPHIN then opens
the construction view
and shows the
succession of layers –
initially without materials.

DELPHIN: Program
operation
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Layers  1 2 3 4 5

DELPHIN shows the 
imported materials in the 
material list.

Steps - Material
• Import material
• Choose program or 

user data base
• Choose import modus
• Choose material and 

import it

DELPHIN: Program
operation
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DELPHIN generates a 
material assignment data 
set and colours layers 
with material assignment 
corresponding to the 
colour of the material.

Steps
• Mark material and 

favoured layer
• Click on green assign 

button

DELPHIN: Program
operation
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DELPHIN divides material 
layers in discrete volume 
elements.

Steps
• Call discretisation 

dialogue
• Set grade of 

refinement (higher = 
more refined 
discretisation)

• Set minimal/maximal 
element thickness 
eventually

• Start discretisation 
(>> Ok)

DELPHIN: Program
operation
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DELPHIN shows the 
imported climate and 
boundary conditions in 
the conditions windows 
and enables the 
assignment to the 
construction.

Steps - Climate
• Import climate 

conditions
• Adjust internal and 

external climate 
data

• Import and assign 
boundary conditions 
data sets

DELPHIN: Program
operation
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DELPHIN generates 
output files and enables 
the assignment to the 
geometry.

Steps - Outputs
• Start Outputs-Wizard
• Deactivate VOC-

outputs, activate 
water content

• Generate and assign 
output files

DELPHIN: Program
operation
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Steps - Simulation
• Open modelling and

simulation properties
• Define starting point

and total duration of
simulation

DELPHIN: Program
operation
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DELPHIN starts the 
numeric solver in a 
separate windox.

Start DELPHIN simulation

Steps – Simulation-2
• Start solver dialogue
• Start simulation

DELPHIN: Program
operation
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While the numeric 
simulation runs, the 
results can be evaluated 
at the same time

Steps - Interpretation
• Open output folder
• Choose output file

DELPHIN pictures the 
results.

DELPHIN: Program
operation
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While the numeric 
simulation runs, the 
results can be evaluated 
at the same time

Steps -
interpretation

• Updating while 
calculation 
possible

• Manifold 
adjustment of 
the charts

• Export into other 
software via 
clipboard

Explicit increase of moisture: 
Improve driving rain protection!

DELPHIN: Program
operation
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Different materials
Surface Material Variation
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Surface Material = Brick, Exposure Coefficient = 1
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0

Surface Material = Clinker, Exposure Coefficient = 1

DELPHIN: results
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2,5
Time in [a]
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M
oi

st
ur

e
m

as
s

de
ns

ity
(li

qu
id

+
va

po
r)

in
[k

g]

18

16 Surface Material = Brick, Exposure Coefficient = 0.1
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8

6

4

2

0

Surface Material = Brick, Exposure Coefficient = 0.4
Surface Material = Brick, Exposure Coefficient = 0.3
Surface Material = Brick, Exposure Coefficient = 0.2

Rain protection/roofing:
Exposure Coefficient Variation

20
Surface Material = Brick, Exposure Coefficient = 0.5

DELPHIN: results
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DELPHIN – Analysis
of 2D problems

Wall with hydrophobisated
surface

Area with faulty hydrophobisation

2D grid after 
discretisation
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Field of humidity with 
faulty hydrophobisation

DELPHIN – Analysis
of 2D problems
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Rehabilitation and Building
in older housing stock

inside outside

16 mm Kalkputz

50 mm Wärmedämmlehm

15/65 mm Trasskalkmörtel

115 mm Ziegel

165 x 165 mm Holzbalken

50
0 

m
m

50
0 

m
m

Discretisated 2D Construction
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Thermal bridge?

Window frame

Plaster, Brick, Plaster, Glue mortar, Insulation, Plaster

DELPHIN – Analysis of 
constructional details
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• Analysis with DELPHIN

DELPHIN – Analysis of 
constructional details
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• Detail 2.1 – with window rabbet

insideoutside

DELPHIN – Analysis of 
constructional details
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• Detail 2.1 – without window rabbet

oi 12,1C

Incorrect! DIN 4108-2 demands:

12,6Coi

insideoutside

DELPHIN – Analysis of 
constructional details

48



49

• Detail 2.5 – with window rabbet

oi 13,8C Ok, thermal protection fulfilled.

Minimum thermal protection of the guideline 
ensures, that the dew point temperature resp.
minimum pretensions for mould are not reached
or exceeded (e.g. on wallpaper).

What about the internal condensate?

insideoutside

DELPHIN – Analysis of 
constructional details
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• Critical moisture content: Condensation and drying behaviour

  92,7%

  56,6%

Condensation periods

Drying period

Critical point in the construction
can dryout during summer.

No moisture accumulation!

DELPHIN – Analysis of 
constructional details
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