

D8.9 Educational Material for University Studies

Old Building Renovation - Driving rain

Dr.-Ing. Rudolf Plagge
Bauphysikalisches Forschungs- und Entwicklungslabor
Institut für Bauklimatik der TU Dresden

Guiding principle

Presentation 7

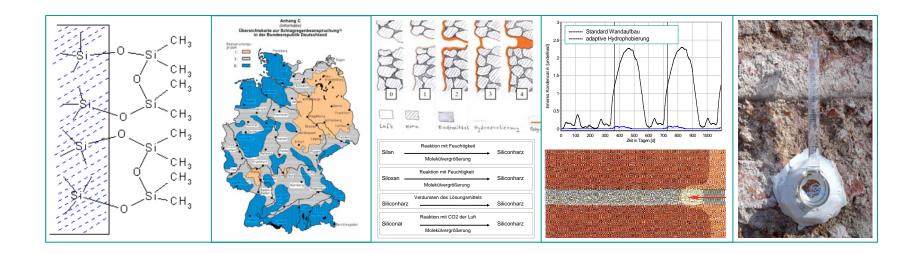
Author. Rudolf Plagge Partner. TU Dresden

University course: Altbausanierung, Hauptstudium (Refurbishment, post graduate)

Date: 13.05.2013 and 19.05.2014 (planned)

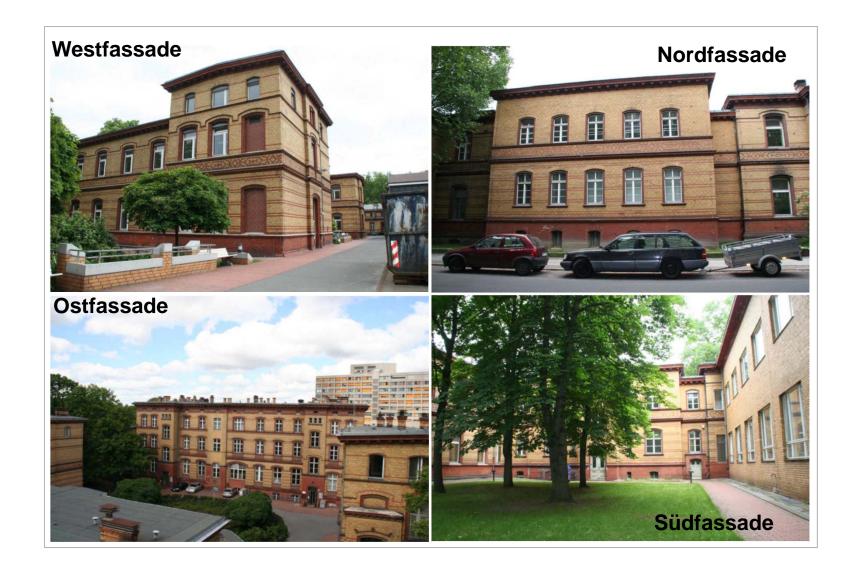
Place: Dresden, Bauphysikalisches Forschungs und Entwicklungslabor, Institut für Bauklimatik der TU

Dresden

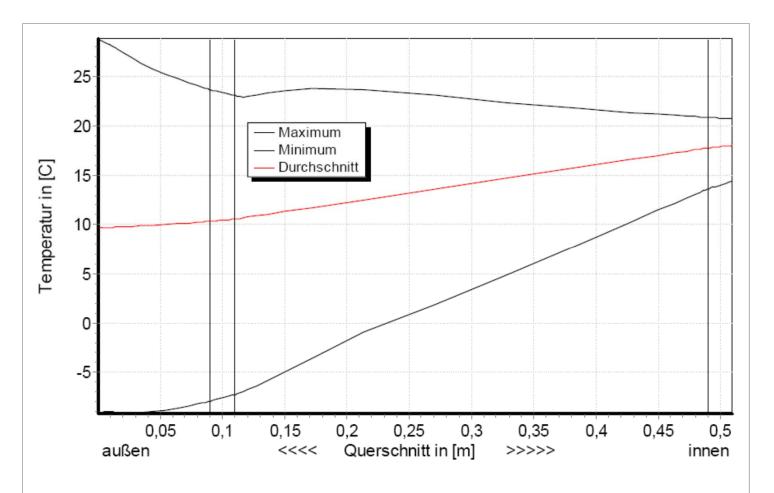

Title of the lesson: "Protection of driving rain"

Description of the contents: the lesson describes the problems of deterioration of building caused by water in masonries, roofs and basement. Then are illustrated the intervention techniques to ensure sanitation. Are finally are described the laboratory test that can be used to investigate these issues. *Name of the file*: WP8 D8.9 20131007 TUD-Lessons 5

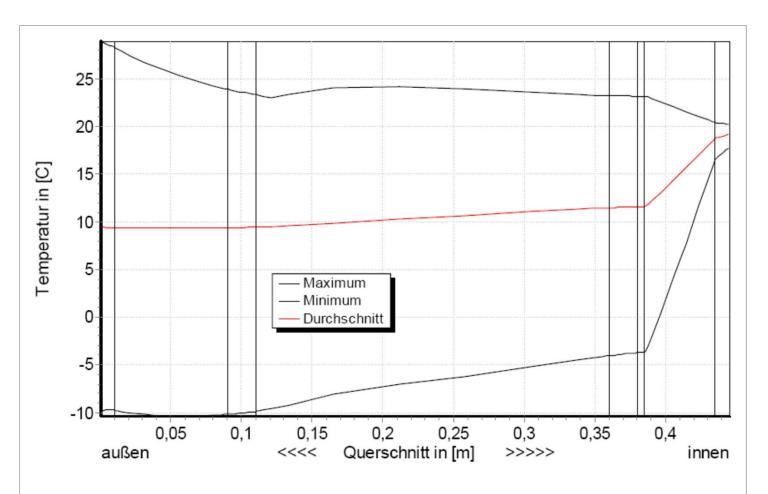
Blended Learning "Altbausanierung"


Altbausanierung 5, Schlagregenschutz

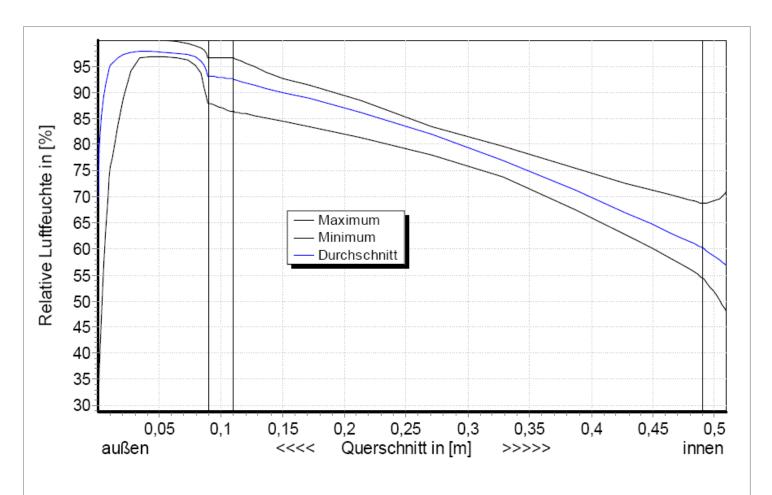
Dr.-Ing. Rudolf Plagge Bauphysikalisches Forschungs- und Entwicklungslabor Institut für Bauklimatik der TU Dresden



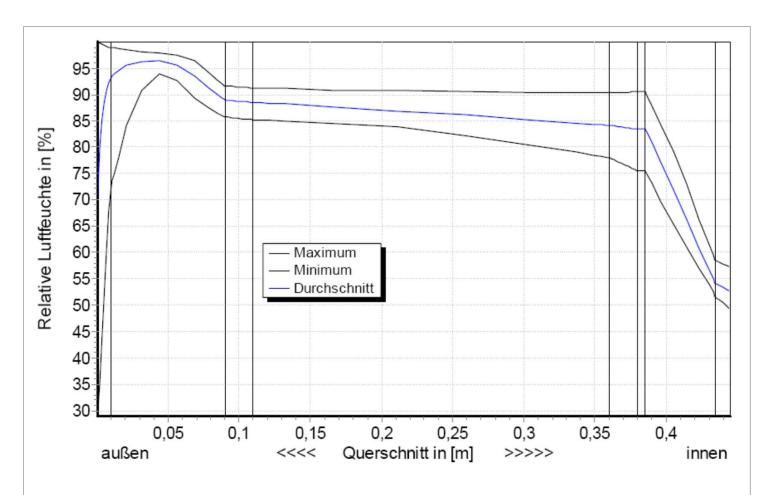
URBAN-Krankenhaus in Berlin Kreuzberg


Bewertung unsanierte Konstruktion

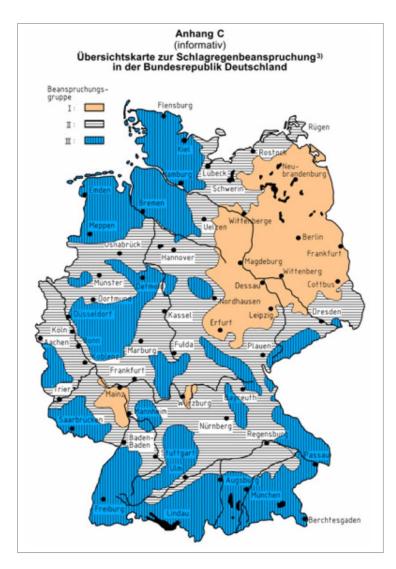
Charakteristische Temperatur-Profile beim Außenwandaufbau d=51 cm ohne Hydrophobierung der Fassade (TRY Potsdam)


Bewertung sanierte Konstruktion

Charakteristische Temperatur-Profile beim Außenwandaufbau d=51 cm mit adaptiver Hydrophobierung der Fassade (TRY Potsdam)

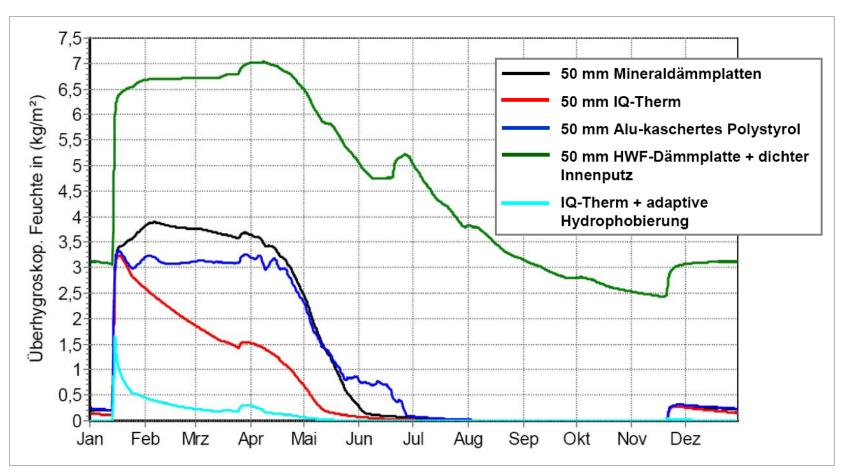

Bewertung unsanierte Konstruktion

Charakteristische Luftfeuchte-Profile beim Außenwandaufbau d=51 cm ohne Hydrophobierung der Fassade (TRY Potsdam)


Bewertung sanierte Konstruktion

Charakteristische Luftfeuchte-Profile beim Außenwandaufbau d=51 cm mit adaptiver Hydrophobierung der Fassade (TRY Potsdam)

Schlagregenproblematik



Außenklima

Übersichtskarte der BRD zur Darstellung der Schlagregenbeanspruchungsgruppe nach DIN 4108

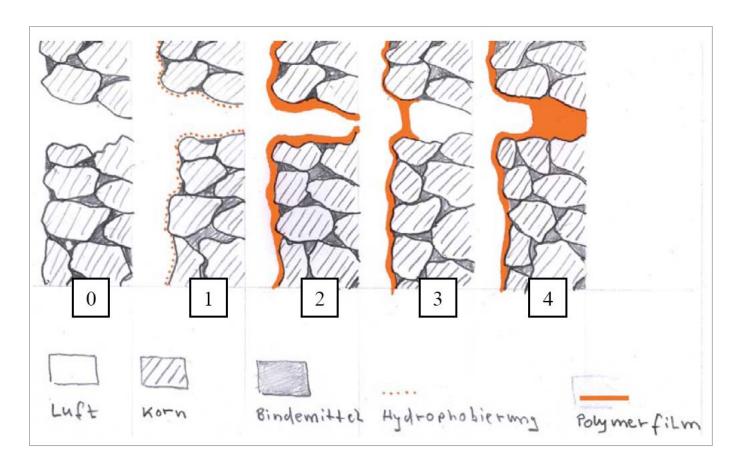
Vergleich unterschiedlichen Innendämmsysteme bei Schlagregenbelastung

ca. 900 mm Schlagregen (Klasse 2 → 3)

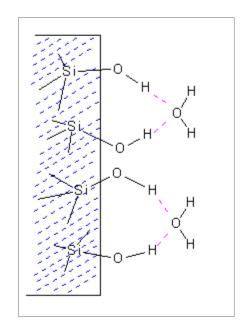


Konstruktiver Aufbau, Schlagregenschutz

Verfugung



Frostsprengung



Schematische Darstellung verschiedener Steinschutzmaßnahmen

Wirkungsprinzip

Hydrophobierung

CH₃

unbehandelte Baustoffoberfläche

(mit adsorbierten Wassermolekülen)

hydrophobierte Baustoffoberfläche

(Siloxanmoleküle fest gebunden und ihre wasserabstossenden Molekülteile (hier vereinfacht nur CH3-Gruppen) nach aussen gerichtet)

verschiedenen Wirkstoffe

Marktübliche Hydrophobierungsmittel

- Gemisch mehrerer Wirkstoffe mit diversen Hilfsstoffe
- vorwiegend organische Harze, Kieselsäureester, Titanester u.a.

Alkoxysilane (vereinfacht oft "Silane" genannt)

- gelöst in wasserfreien Alkoholen (z.B. Isopropanol)
- gelöst in aliphatischen Lösemitteln
- emulgiert in Wasser (z.B. das Triethoxyoctylsilan)

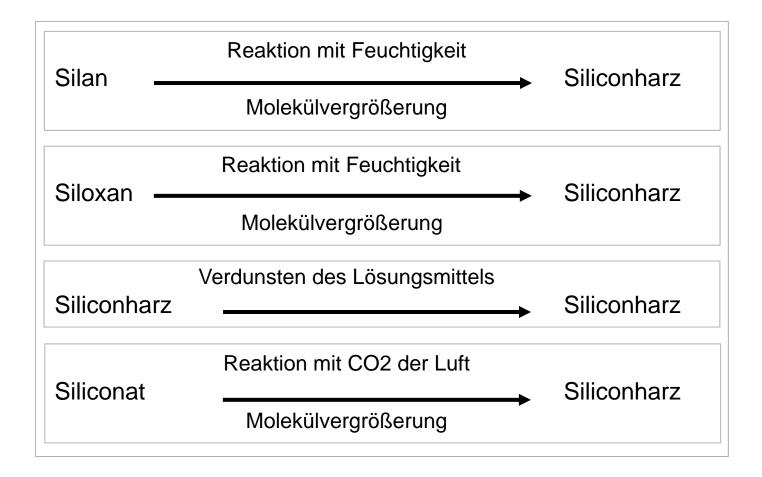
Alkoxysiloxane (oft einfach nur "Siloxane" genannt)

- Unterscheidung in oligomere und polymere Siloxane (kleine und große Moleküle)
- Gelöst in aliphatischen Lösemitteln
- Emulgiert in Wasser

Microemulsionskonzentrat (Silan und oligomere Alkoxysiloxan Gemisch) Silicon-Mikroemulsionskonzentraten (SMK) = 100%iges Siliconprodukt, mit Wasser verdünnbar und dabei spontan eine Microemulsion bildet

verschiedenen Wirkstoffe

Siliconharze (Alkylpolysiloxane)


- gelöst in wasserfreien Alkoholen (z.B. Isopropanol)
- gelöst in aliphatischen Lösemitteln

Alkalisiliconate

- hochalkalische Lösungen von Kaliumsiliconat, reagieren mit dem Kohlendioxid der Luft, Zwischenstufe Silanol und dann zum Silikonharz
 - → Kaliumcarbonat (Pottasche, K2CO3) als Nebenprodukt, (weißer Belag auf der Oberfläche)
 - → werkseitigen Imprägnierung von Ziegeln, Gasbeton und ähnlichen Baustoffen
 - → Injektagemitteln für nachträgliche Horizontalsperren enthalten (dort meist in Kombination mit Wasserglas).

verschiedenen Wirkstoffe

Zubereitungsformen

Imprägnier-Emulsionen, wässrig

- lösemittelfreie, wasserbasierte Emulsionen aus Kombinationen von Silanen und/oder Siloxanen
- wasser- und lösemittelfreie **Konzentrate**, vor der Verarbeitung mit Wasser verdünnt und dabei emulgiert (sogen. Mikroemulsionen)

Imprägnier-Paste

- hochviskose (thixotrope) Emulsionen von Siloxanen und Silanen in Wasser
- Verarbeitung der Creme mittels Rolle, Bürste oder Airless- Spritze aufgebracht werden, ohne dass sie abläuft (Methylsiliconharz, Emulgatoren, Wasser und Octyltriethoxysilan)

Imprägnier-Lösungen, lösungsmittelhaltig

- hochalkylierte Alkoxysiloxane, lösen sich nur in Benzin oder ähnlichen organischen Lösungsmitteln

Imprägnier-Lösungen, wässrig

wässrige Lösung = Kalium-Methylsiliconate oder Kalium-Propylsiliconate eingeschränkten Anwendungsbereich

richtige Anwendungstechnik

Wirksamkeit der Imprägnierung von der Höhe der Eindringtiefe bestimmt, optimale Eindingtiefe → 6-8 mm, materialabhängig erzielbare Eindringtiefe abhängig von:

- Saugfähigkeit des zu imprägnierenden Baustoffes
- Feuchtegehalt zum Zeitpunkt der Imprägnierung
- chemisch-physikalischen Wechselwirkungen zwischen Baustoff und Wirkstofflösung
- Art des Wirkstoffes (u.a. der Größe der Moleküle, chemische Struktur)
- Konzentration des Wirkstoffes (zu viel Wirkstoff schadet eher)
- Art des Lösungsmittels (je nach Wirkstoff und Untergrundgegebenheiten wechselt das optimale Lösungsmittel)
- **Anwendungstechnik** (Verarbeitungsweise, Auftragsmenge, Kontaktzeit, Anzahl der einzelnen Arbeitsgänge und Zeitabstände

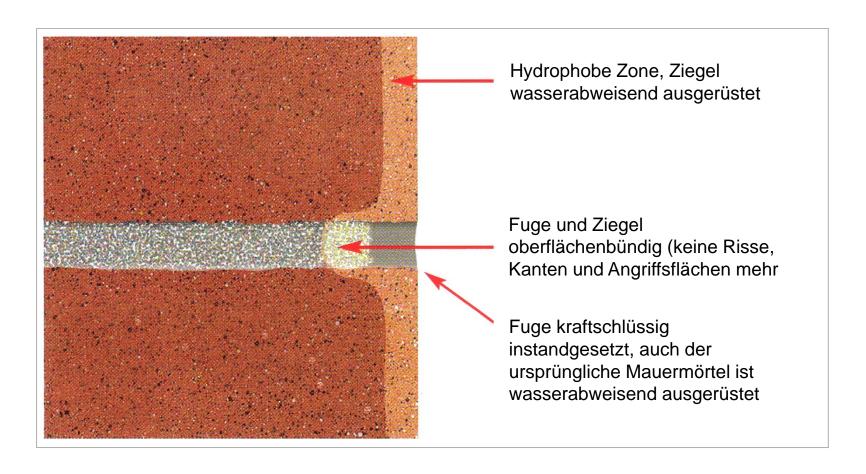
Verarbeitung

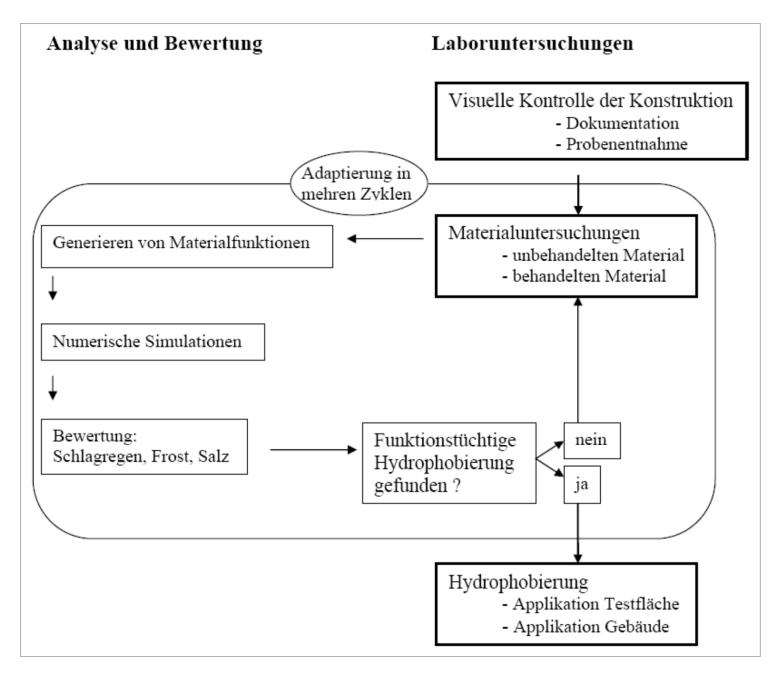
Wie feucht darf der Untergrund sein

- Oberfläche relativ trocken, Baustoff im Inneren sehr feucht
- \rightarrow ok
- trockener Baustoff, nach einem Regenschauer oberflächennaß
- → nein
- moderne Imprägniermittel (Cremes)selbst bei feuchter Witterung verarbeitbar, siehe Herstellerangaben im Technischen Merkblatt!

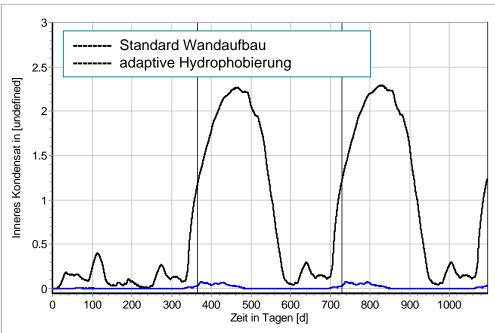
Verarbeitung:

- malerüblichen Airlessgeräte
- Quast (Bürste), Fellrolle oder weicher Pinsel (Flutung mit dem erforderlichen Materialüberschuss nur bei kleinen Flächen sinnvoll)
- **Flutverfahren** an senkrechten Flächen, sattes tränken der Fläche (herunterlaufen der Lösung bis zu einem halben Meter an der Fläche)
- → mehrmaliger Auftrag größere Eindringtiefen
 - → zweimal kurz besser als einmal lang gespritzt
 - → immer nass in nass

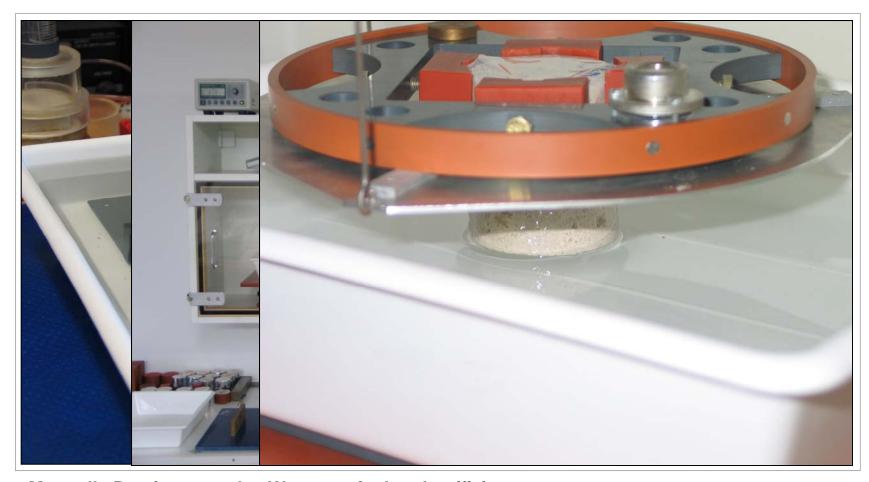

Also: Zügig arbeiten, große Fläche in viele kleine unterteilen


	Wirkstoffe				
Wirkstoffgruppe	(Beispiele)	Lösungsmittel	Untergrund	Bemerkungen	typische Handelsprodukte
	anhydrolisiertes			aufgrund des Isopropanols speziell für	
	Silan	wasserfreier Alkohol		Fassadenbauteile mit	
	(niedermolekulares	(Isopropanol)	Beton, KS, Naturstein, Putz,	lösemittelempfindlichen Baustoffen	
)		Ziegel, Gips?	wie z. B. Polystyrol, Bitumen,	Funcosil SN (Remmers)
					wird nur in Gemischen mit Siloxanen
		aliphatische Lösungsmittel			angeboten (s.u.)
			KS, Naturstein, Putz, Ziegel,		
Silan		Emulsion in Wasser	Porenbeton, Leichtbeton; Gips?		Funcosil WS (Remmers)
	oligomeres		Beton, KS, Naturstein, Putz,		Funcosil SNL (Remmers);
	Alkylalkoxysiloxan		Ziegel, (alkalische Untergründe		Ceretec CT 12 (Ceresit);
Siloxan		aliphatische Lösungsmittel	bei manchen Produkten nur mit		Vesterol Siloxan (Hahne)
Siliconharz	polymere Siloxane	aliphatische Lösungsmittel			
				stark alkalische Lösung (pH=13); wird	
			nachträgliche Hydrophobierung		Produzenten sind u.a. die Wacker Chemie:
			von z.B. Gipskarton- oder	nicht eingesetzt; dafür um so öfter in	"Wacker Bautenschutzmittel BS 15" und
	Kalium-		Gipswandbauplatte jedoch	Komb. mit Wasserglas als	GE-Silicones: "Baysilone Imprägniermittel
Siliconat	Methylsiliconat	Wasser	brauchbar	Bohrlochinjektagemittel für	SK"
	Silane und		Beton, KS, Naturstein, Putz,		
Silan-Siloxan-	oligomere		Ziegel, auch frische		Ceretec CT 11 (Ceresit);
			hochalkalische Untergründe		Siloxan Fassadenimprägnierung (Colfirmit
Gemisch	Alkoxysiloxane	aliphatische Lösungsmittel	(Beton, Kalksandstein, frische		Rajasil)
		Emulsion in Wasser			Unil SMK (Kulba);
		(Mikroemulsion)			Hydrophobierung LF (Ispo);
			Beton, KS, Naturstein, Putz,	Konzentrat; muss vor der Anwendung	, , , , , , , , , , , , , , , , , , , ,
			Ziegel; Gips?	mit Wasser verdünnt werden	Sikagard 702 W-Aquaphob (Sika)
					PCI-Siliconal W (PCI Augsburg);
					Vesterol SSW (Hahne);
			Beton, KS, Naturstein, Putz,		Trock'ne Mauer Silicon-Imprägnierung
		Emulsion in Wasser	Ziegel; Gips?		(Lugato);
	+			als Pasten, keine fließende Lösung	
	Octyltriethoxysilan			aber trotzdem mit gutem	StoCryl HC 100 (StoCretec); Infos auch
	o don			Eindringverhalten; der Vorteil	unter den Rohstoffen: "Baysilone
	oder			gegenüber den Lösungen: Die Paste	Impregnating Cream TP 3803" (GE-
	Alkylalkoxysilan +		Beton, KS, Naturstein, Putz,	kann auch über Kopf verarbeitet	Silicones) oder unter WACKER BS®
		pastöse Emulsion in Wasser		werden.	"Creme C" und "Creme D"
	2 likylaiko xysiio xali	pastose Emaision in wasser	Ziegei, Gips:	WCIUCII.	Creme C unu Cicille D

Wirkungsweise einer hydrophoben Imprägnierung



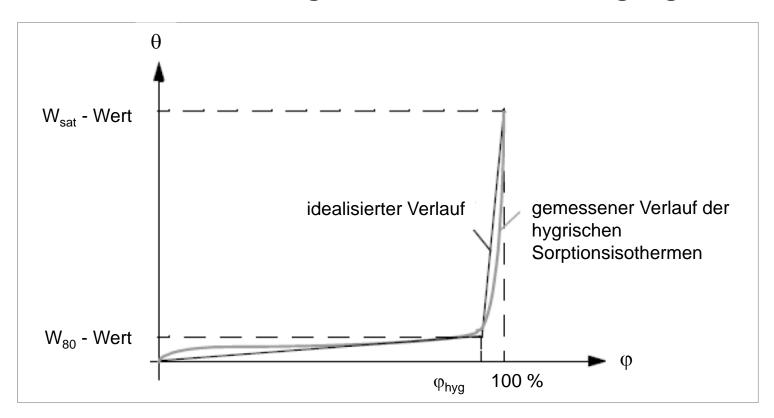
Adaptive Hydrophobe Imprägnierung



- hohe Funktionssicherheit und Dauerhaftigkeit des Schlagregenschutzes,
- homogenes Eindringen bis in 15mm Tiefe,
- Einsatz auch auf feuchten Untergründen → Emulsionscreme
- Erhalt des Trocknungspotentials nach Innen mit kapillaraktiven Dämmstoffen,
- unveränderter optischer Eindruck nach der Maßnahme

Hygrothermische Stoffkennwerte: Wasseraufnahme Experiment

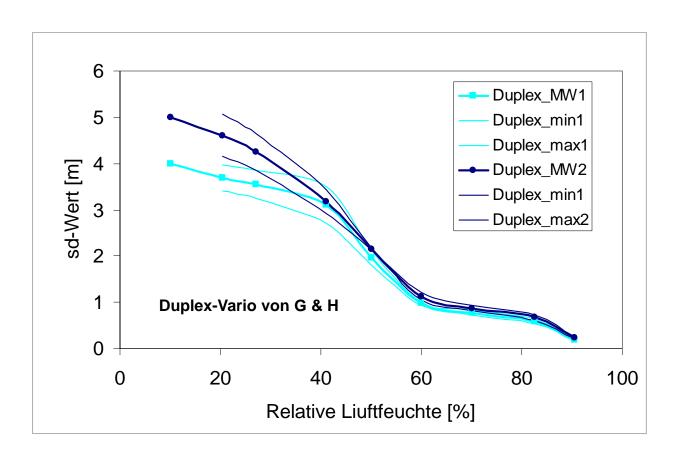
Manuelle BestiAutomgtibeshle/Bestiraufualgndelschleffizierdenfnahmekoeffizienten



Reproduzierbarkeit, Wasseraufnahmeexperiment

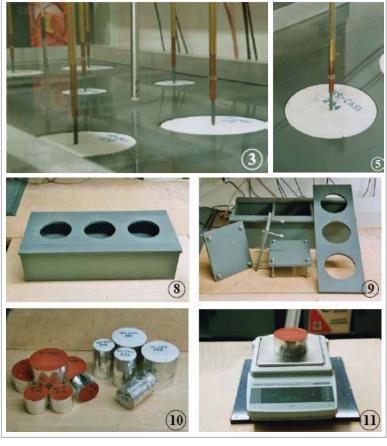
Hygrothermische Stoffkennwerte: Ausgleichsfeuchte und Sättigungsfeuchtegehalt

Hygrothermische Stoffkennwerte: Wasserdampf-Diffussionsexperiment

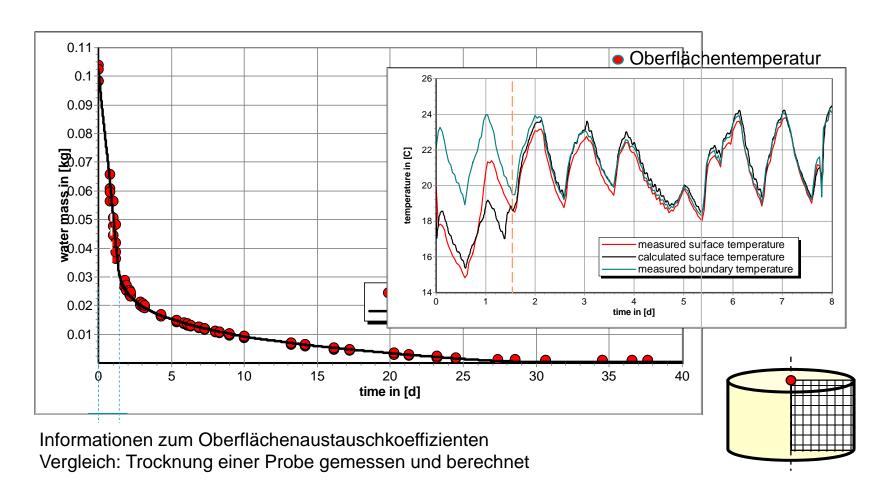


Bestimmung der Wasserdampfdiffusion (dry-cup und wet-cup Messungen)

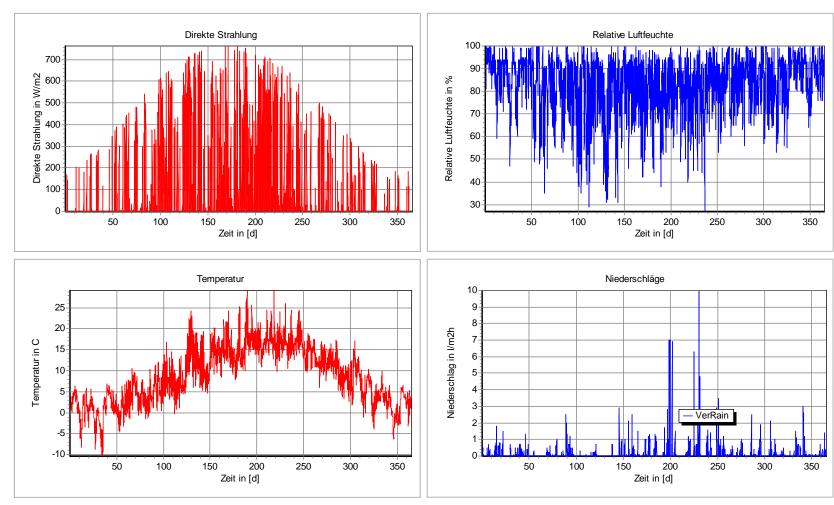
Feuchteabhängige Wasserdampfdiffussion



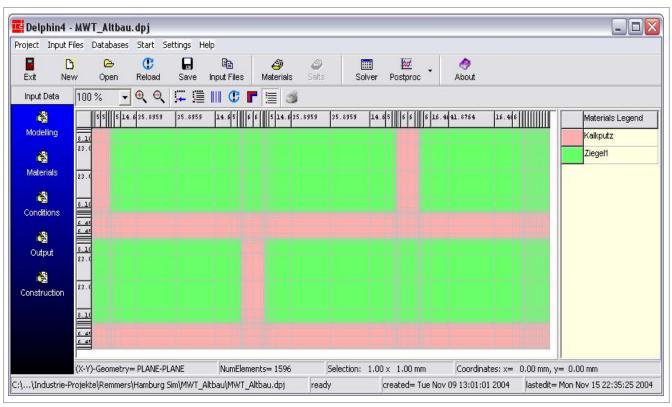
Verdunstungsexperimente


Bestimmung von:

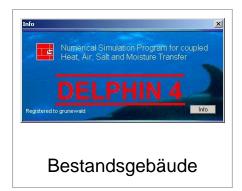
- Oberflächenaustauschkoeffizient
- Trocknungszeiten
- Verdunstungdpotential



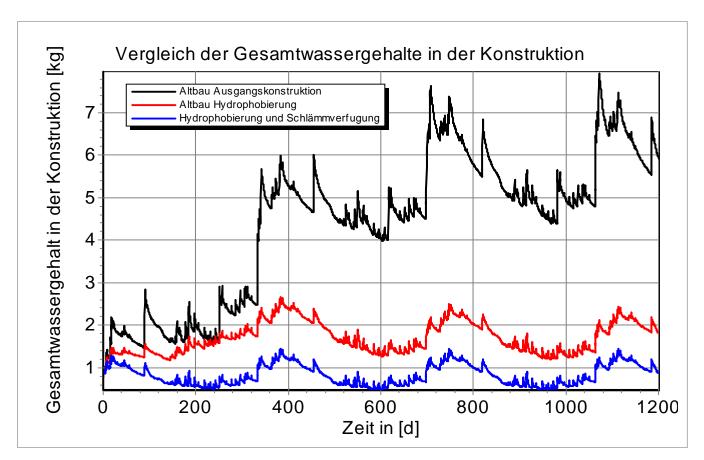
Simulation von Verdunstungsexperimenten

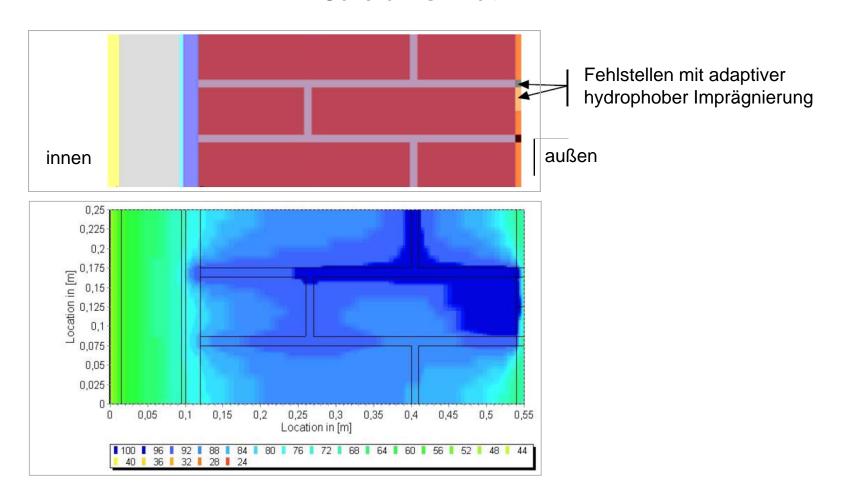


Reale Klimabelastung

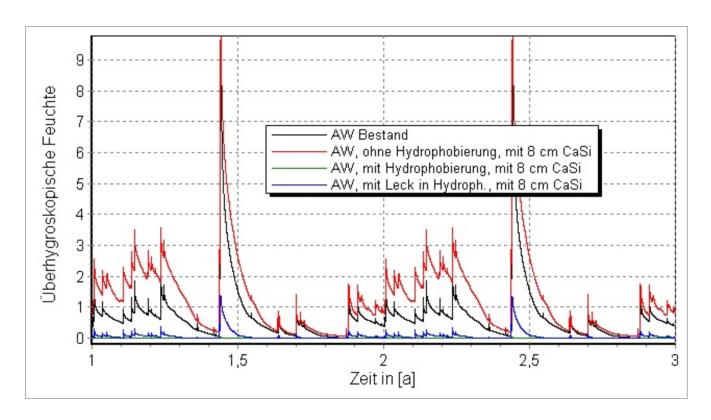

Ziegelkonstruktion - 36ger Wandaufbau

Hygrothermische Simulation unter Realklima

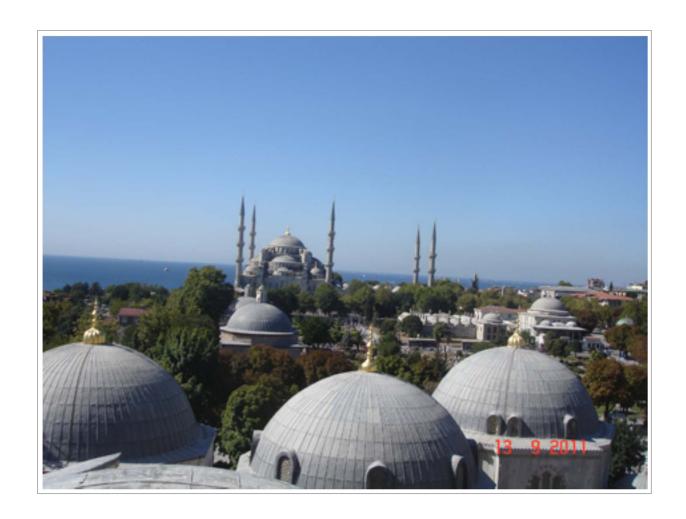

Simulationen



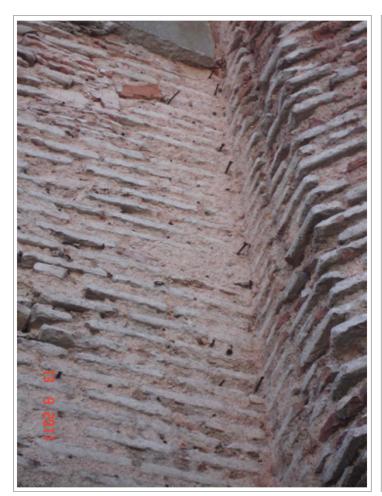
Systemvergleich: Altbau, Imprägnierung und Schlämmverfugung

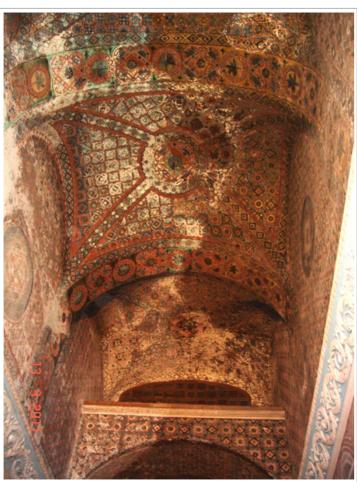


Hydrophobierung mit Fehlstellen, Außenwand mit 80 mm Calciumsilikat

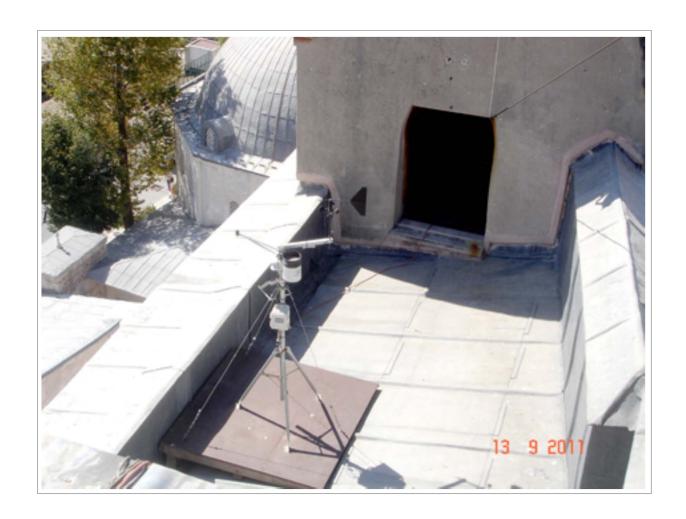


Hydrophobierung mit Fehlstellen, Außenwand mit 80 mm Calciumsilikat




Hagia Sofia

Hagia Sofia ohne Putz, Schlagregen dringt ein, massive Schäden innenseitig



Hagia Sofia, Feuchte und Salzschäden

Hagia Sofia

Hagia Sofia, die Fassade von Außen

Hagia Sofia, Bestimmung der Wasseraufnahme mit dem "Karstenschen Prüfröhrchen"

Hagia Sofia

Messen der Wasseraufnahme einer Fassade nach Wahl

Hagia Sofia: WSW, 2. floor 13.09.2011 brick and plaster cover, intact skin of brick surface area 1.3 cm^2 Faktor 7.746 Zeitdauer Infiltration measured data Start ml sec 16:37:00 0 0 0.2 405 16:43:45 0.7 645 16:47:45 0.3 920 16:52:20 0.4 0.6 0.5 1165 16:56:25 17:02:40 0.6 1540 0.5 Infiltration [min] 0.2 0.1 ◆ Infiltration ml 800 0 200 400 600 1000 1200 1400 1600 1800 Time [sec]

Auswertung: Hagia Sofia, Messen der Wasseraufnahme einer Fassade

Zeitdauer min	Start 0	Infiltration ml	Infiltrationsrate ml/min	0.500						
0.0	0.0	0	1111/111111	0.500						
6.8	2.6	0.154	0.0228	0.450						
10.8	3.3	0.231	0.0215							
15.3	3.9	0.308	0.0201	0.400		Infiltration ml			/	
19.4	4.4	0.385	0.0198			Linear (Infiltration	n ml)			
25.7	5.1	0.462	0.0180	0.350						
				<u>u</u> 0.300						
			0.0204	0.250						
Aw =	0.1265	SQR min		0.250				y = 0.126	65x - 0.1798	
Aw =	0.0163	SQR sec		0.200				$R^2 =$	0.9974	
				0.150						
				000						
				0.100						
				0.050						
				0.000						
				0	1	2	3	4	5	
							Time [SQRmin]			

Gemeinsame Auswertung

Abgabe der Hausarbeit

- Bild vom gemessenen Gebäude
- kurze Beschreibung des Gebäudes (welcher Putz, Ziegel, Klinker) Was interessiert Sie an der Untersuchung?
- Bild vom Messaufbau
- Abgabe einer Tabelle (bevorzugt Excel) mit der Wasseraufnahme als Funktion der Zeit
- In das Opalsystem hochladen
- Name und Matrikelnummer nicht vergessen!
- Abgabetermin: Juli 2012

→ 9% der Gesamtnote basiert auf dieser Hausarbeit

