

D8.9 Educational Material for University Studies

Sustainable Refurbishing of Historic Buildings and Relevant Building Physical Aspects based on

Case Study 5: Secondary School Hötting Innsbruck, Austria

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 260162

This document reflects only the author's views. The European Union is not liable for any use that may be made of the information contained therein.

Guiding principle

Presentation 1

Author: Rainer Pfluger, Gerald Gaigg, Kai Längle

Partner: University of Innsbruck (UIBK)

University course: Nachhaltige Gebäudesanierung ("Sustainable Renovation" for Students in "Masterstudium Domotronik")

Date: 16.01.2013

Place: Innsbruck, University of Innsbruck, SR-Container 5

Title of the lesson: "Sustainable Renovation of Buildings - Lessons learnt from 3ENCULT-Case Study CS5"

Description of the contents: Within the university course "Sustainable renovation", students learn refurbishing strategies and how to include energy efficiency. The course "Nachhaltige Gebäudesanierung" is about refurbishing in general (not only on listed buildings and cultural heritage), however the training material elaborated within 3ENCULT has it's special focus on that. The content includes some introduction in terms of basic building physical issues as well as the principles of conservation. The school building CS5 (NMS Hötting) was used to demonstrate how to find well adapted solutions for a specific building, based on detailed building diagnosis and measuring results for comfort and air quality parameters.

Name of the file: WP8_D8.9_20131007_UIBK-Presentation 1

Content Overview

Basic principles

- Conservation principles
- Building physical principles

Case study example 3ENCULT CS5

- Building diagnosis and comfort measurements
- Minimal invasive insulation
- Prevention of condensation Optimization of heating control
- Development of new ventilation concept
- Enhanced daylight autonomy by daylight redirection
- Improved artificial lighting using LED
- Highly efficient acoustic absorbers

Introduction

 "Historic structures constitute a large percentage of the building stock in Europe and a valuable asset for residential, public, representative cultural and touristic use.
Although usually legally treated as exceptional cases and thus excepted from energy legislation, energy efficiency is a good chance to support the future use of historic buildings. Through smart implementation of high quality energy efficiency solutions in many cases a notable reduction in the energy demand of historic buildings is achievable. However, working on historic buildings requires sensitive approaches."

The Basic Principles of Cultural Heritage Preservation

- Preservation of the building
- Retaining the historic character
- Maintaining the structure

Any intervention has avoid or minimize the

- Impact on substance (material)
- Impact on image

If changes are not avoidable, the interventions should guarantee the reversibility

Basic questions to be answerd before any intervention in historic buildings

- What kind of, which amount and where is **destructive work** on the building needed for that implementation?
- What is the **change of the actual appearance**?
- What is the change in terms of **the historic use and architectural idea**?
- What are the consequences for the **total building climate**?
- How is made sure, that the new climate situation does not risk the building material or the interior?

Cultural Heritage: EIA, SEA and SUIT

Wind tunnel, Hispano-Suiza, Bois Colombes: 1937-1999 Historic monument

Cultural Heritage: EIA, SEA and SUIT

Soufflerie Hispano-Szuiza, Bois Colombes: 1937-1999 Historic monument

Further Reading

- **D2.1** Report on demand analysis and historic building classification
- D2.2 Position Paper on criteria regarding the assessment of energy efficiency measures regarding their compatibility with conservation issues
- D2.5 Report on Methodology and Checklist

Building Physical Principles

Energy Efficiency - Basic Principles

- Reduction of transmission losses
- Reduction of ventilation losses
- Avoiding of **thermal bridges, condensation** and **mold**
- Passive solutions: Building envelope and thermal inertia
- Active solutions: Energy efficient heating, cooling and building services

CS 5 NMS Hötting Located in Innsbruck, Austria

CS 5 NMS Hötting Situation before Intervention

- **Construction in 1929/30**, architects Franz Baumann & Theodor Prachensky
- One of the most important examples of early modern architecture in Tyrol (Peter Behrens style), listed!
- Annex from 1950 at the northeast part of the building
- Still in use as **school for pupil** at the age of 10 up to 15

Problematic issues of CS 5 NMS Hötting

Problems, which had to be solved:

- High heating energy demand ± 130 kWh/(m²a)
- Summer overheating problems due to large unshaded glazing areas
- Air quality problems and low thermal comfort draft risk and low surface temperatures in winter

Cultural Heritage: EIA, SEA and SUIT

CS 5 NMS Hötting Before and after Intervention

CS 5 NMS Hötting Building Diagnosis

Why building diagnosis?

- Documentation of damages and risk of damages of the building construction
- Lack of comfort
- Information for decisions on future interventions

What kind of building diagnosis?

- Thermal, visual and acoustic comfort, indoor air quality
- Thermal bridges
- Material tests (plaster, screed, concrete, iron)

CS 5 NMS Hötting Monitoring Related to User Comfort

Thermal comfort

- Draft risk (air velocity)
- Temperature (radiation and air temperature)
- Relative humidity
- Open/close Status of windows and doors

Visual comfort

- Artificial light situation
- Daylight situation

Indoor air quality

 high ventilation heat losses because of long-term windows ventilation even in winter

CS 5 NMS Hötting **Analysis of Energy Demand**

- Building survey and adaption of old plans
- Ð Infrared thermography N
- a | y Air-tightness-test
- A A Analysis of actual ventilation situation
 - Monitoring of artificial light consumption
 - Thermal bridge calculations
- Building model Calculation of **annual heat demand** by PHPP
 - Calculations of **refurbishment variants**

Bencult

CS 5 NMS Hötting Analysis of Energy Demand

Energy consumption of the electric lighting

-> Percentage of the artificial lights is monitored by on/off logger which are mounted at the luminaires

Thermal Comfort

3 Sensors at the same height (1m above floor level):

- Combined humidity and temperature sensor
- Globe thermometer for radiative temperature
- Thermoanemometer for indoor air ⁻ velocity (draft risk, turbulence of air)
- **1 NTC** sensor for temperature 10 cm above floor level

All sensors are logged by the Almemo logger 2590-4S

-> Calculation of the PMV and the PPD values

Window Ventialtion

The indoor climate is influenced by the users and their manual ventilation behavior.

-> therefore open/close loggers with reed contacts are mounted at the windows.

Indoor Air Quality IAQ

Measurement of the indoor air CO2 concentration at the same altitude (1m above floor level)

-> the occupancy of the rooms is important for both measurements: indoor air quality and thermal comfort

Classification	Description	CO ₂ -concentration above
(DIN EN 13779)	Description	external concentration [ppm]
IDA 1	high indoor air quality	< 400
IDA 2	mean indoor air quality	400 - 600
IDA 3	moderate indoor air quality	600 -1000
IDA 4	low indoor air quality	> 1000

Occupancy

Occupancy of the classrooms

	St	Мо	Di	Mi	Do	Fr		
	1						07:45	08:35
	2						08:40	09:30
	3						09:35	10:25
011	4						10:40	11:30
- a	5						11:35	12:25
se 1	6						12:30	13:20
las	7						14:30	15:20
-	8						15:20	16:10
	9						16:20	17:10
	10						17:10	18:00

	St	Mo	Di	Mi	Do	Fr		
	1						07:45	08:35
	2						08:40	09:30
	3						09:35	10:25
010	4						10:40	11:30
þ	5						11:35	12:25
se 1	6						12:30	13:20
las	7						14:30	15:20
	8						15:20	16:10
	9						16:20	17:10
	10						17:10	18:00

	St	Mo	Di	Mi	Do	Fr		
	1						07:45	08:35
	2						08:40	09:30
	3						09:35	10:25
114	4						10:40	11:30
a,	5						11:35	12:25
se 2	6						12:30	13:20
las	7						14:30	15:20
	8						15:20	16:10
	9						16:20	17:10
	10						17:10	18:00

	St	Мо	Di	Mi	Do	Fr		
	1						07:45	08:35
	2						08:40	09:30
	3						09:35	10:25
201	4						10:40	11:30
- a	5						11:35	12:25
se 3	6						12:30	13:20
las	7						14:30	15:20
1	8						15:20	16:10
	9						16:20	17:10
	10						17:10	18:00

	St	Мо	Di	Mi	Do	Fr		
	1						07:45	08:35
	2						08:40	09:30
_	3						09:35	10:25
111	4						10:40	11:30
bi -	5						11:35	12:25
se 3	6						12:30	13:20
las	7						14:30	15:20
×	8						15:20	16:10
	9						16:20	17:10
	10						17:10	18:00

	St	Мо	Di	Mi	Do	Fr		
	1						07:45	08:35
	2						08:40	09:30
	3						09:35	10:25
214	4						10:40	11:30
ļ	5						11:35	12:25
d d	6						12:30	13:20
lac	7						14:30	15:20
	8						15:20	16:10
	9						16:20	17:10
	10						17:10	18:00

Daylight Measurement

Method 1: -> Measurement of the illuminance at the height of the working plane in a grid of ca. 90*90cm inside the room

-> Measurement of the illuminance at a unobstructed point (at the roof) at the same time

-> Calculation of the daylight factor

Daylight Measurement

Daylightfactor room 010

Daylightf. [%]

2,50-3,00

2,00-2,50 1,50-2,00

1,00-1,50

0,50-1,00

0,00-0,50

Daylight Measurement

Method 2 -> Measurement of the illuminace in- and outside, measuring of the luminace and taking pictures with a digital camera at the same time

- -> Creation of a HDR-file out of the pictures
- -> Definition of the luminace at one spot
- -> Calculation of the factor

Glare

-> Taking 5 pictures with a calibrated digital camera in defined directions

-> Creation of a HDR-picture out of these pictures (WEB-HDR)

-> readout of the luminance and definition of the areas with glare risks

Glaremeasuring in room 213

Section A-A, scale 1:100

CS 5 NMS Hötting Possible Reduction of Heat Demand

CS 5 NMS Hötting Energy Efficient Solutions

- Development of new ventilation concept Prevention of condensation at beam end of the concrete brick ceiling (internal insulation)
- Enhanced daylight autonomy by daylight redirection
- Improved artificial lighting using LED
- Optimization of heating control
- Minimal invasive external insulation
- Different variants of internal insulation
- Highly efficient acoustic absorbers

Relative humidity [%] at beam end

CS 5 NMS Hötting Interventions on Windows

Box-type windows

CS 5 NMS Hötting Interventions on Windows

Box-type windows improvements: Classroom 1

mounting: airtightness, thermal bridges heatflux: double glazing Uw 1,1 W/m²K (before Uw 2,8 W/m²K)

IR-Thermography after intervention (prototype classrooms)

3ENCULT CS5, Höttinger School

CS 5 NMS Hötting Interventions on exterior wall

Interior insulation: Remmers IQ Therm 80

Reversibel (loam glue) Thermal conductivity **0,033 W/mK, capillaryactive***

*PUR-foamboards with capillaryactive calcium silicate - wicks

CS 5 NMS Hötting Interventions on exterior wall

Interior insulation: Wegscheider Holzbau / Isocell

Reversibel : wooden frame construction, loam plaster, cellulose Thermal conductivity: **0,04 W/mK, , capillaryactiv** cellulose

CS 5 NMS Hötting Interventions on exterior wall

Interior insulation: Wegscheider Holzbau / Isocell

CS 5 NMS Hötting Interventions heating distibution

Radiators: heating water temperature actually up to 85°C

Target: lowering temperature to a level of 45°C integrating RE (solar thermal collectors)

Central system with direct vertical supply air ducts

Principle of Active Overflow in school buildings

- Minimized duct network
- Low impact for historic buildings
- Easy control system
- Mixed air in corridors
- Fire protection doors have to be cept open

Decentralized wall integrated ventilation system

CS 5 NMS Hötting Central Ventilation System

CS 5 NMS Hötting Two prototype classrooms

CS 5 NMS Hötting Horizontal Air Flow (via corridor)

Sencu f

CS 5NMS HöttingTwo prototype classrooms

CS 5 NMS Hötting Ventilation: Active Overflow

CS 5 NMS Hötting Wall breakthrough for the silencer

CS 5 NMS Hötting Active Overflow elements

CS 5 NMS Hötting Active Overflow elements

CS 5 NMS Hötting Passive overflow element with silencer

Passive overflow element with silencer

Sound absorber plate

Textile diffusor (Prihoda, CZ)

Laser perforation

Flow visualisation

Snemometer measurement of air flow velocity

Mounting of textile diffusor

Finished ventilation system: Supply air through textile hose

Function of textile hose:

- distribution of air evenly
- covering of silencer
- reduced maintenance

CS 5 NMS Hötting Test Setup: Exhaust Air Fan

Control of central and active overflow fans

CO₂-Simulation Results (CONTAM-Simulation)

Time of day [h]

Measurement of CO₂-concentration at different positions and levels in the class room and corridor

Sensor Positions for CO₂-Concentration Measurement

Evaluation: Measurement of CO₂-Concentration

- 2 windows opened for about 8 minutes (left arrow)
- Pupils are not in classroom the first 15 minutes of the lesson (right arrow)

Bencult

Measured Pressure Drop at the Textile Diffusors

Results of noise-level measurem. as function of the flow rate

Measured normalized sound level difference with airtight doors

Result: The quality of the protection for airborn sound transmission according to ÖISS was achieved

Sencu f

Summary - Ventilation

- Three solutions for minimal invasive ventilation systems (decentral, central vertical and active overflow)
- Active overflow ventilations for school building realized (prototype by ATREA) and measured
- Good sound protection from class room to corridor (41 dB)
- High electric efficiency (0,09 Wh/m³)
- On/Off control by time schedule and presence sensors
- Draft free supply air inlet by textile diffusors

CS 5 NMS Hötting Cultural Values and Architecture

CS 5 NMS Hötting Artificial Light

Classroom 1:

- LED -lighting
- Automatc dynamic artificial and daylight control
- High-end solution (colour temperature control)

Classroom 2:

- Artificial light by fluorescent lamp
- Energy efficient day light dependent control
- Light integrated in sound absorber

CS 5 NMS Hötting Artificial Light

Classroom 1:

Control element

CS 5 NMS Hötting Artificial Light Before Intervention

		Close	
	Window	Wall	Class
Surface area	64,5	64,5	Surfac
Occupied time in monitoring period [h]	826	826	Occup [h]
Operation time per year[h]	513,68	528,43	Opera
Electric power consumption [W]	266,8	266,8	Electri
Elektric energy [kWh]	137,05	140,99	Elektri
Energy consumption [kWh/m ² a]	4,31		Energ

JIASSI UUIII Z	Window	Wall
Surface area	64,5	64,5
Occupied time in monitoring period [h]	678,5	678,5
Operation time per year[h]	650,2	654,35
Electric power consumption [W]	266,8	266,8
Elektric energy [kWh]	173,47	174,58
Energy consumption [kWh/m ² a]	5,40	

CS 5 NMS Hötting Artificial Light after Intervention

Window

64,5

678,5

650,2

282

0,52

111,73

3,98

Wall

64,5

678,5

654,35

282

0,74

145,48

After Intervention

Classroom 1 Lights:	Nindow	Wall	Classroom 2 Lights:
Surface area	64,5	64,5	Surface area
Occupied time in monitoring period [h]	826	826	Occupied time in monitoring period [h]
Operation time per year[h]	513,68	528,43	Operation time per year[h]
Electric power consumption [W]	279,5	279,5	Electric power consumption [W]
Saving by daylight dependent control	0,52	0,74	Saving by daylight dependent control
Electric energy[kWh]	102,89	125,02	Electric energy[kWh]
Energy consumption [kWh/m ² a]	3,	53	Energy consumption [kWh/m ² a]

Comparison of consumption before and after Intervention

Classroom 1

Classroom 2

Energy consumption old [kWh/m²a]	4,31	Energy consumption old [kWh/m ² a]	5,4
Energy consumption new [kWh/m²a]	3,53	Energy consumption new [kWh/m²a]	3,98
<image/>	18 %		

CS 5 Daylight

NMS Hötting

Classroom 1:

 Combined system for day light redirection and shading

Day light redirection

Shading

Type E 80 LD

CS 5 NMS Hötting Acknowledgement and Partners

Projectpartners:

3ENCULT (project coordination EURAC, Bozen, IT)

- building physics, measurements: Uni Innsbruck, Uni Stuttgart, Cartif, PHI
- thermography: IDK Institut für Diagnostik und Konservierung an Denkmalen
- daylight/shading: Bartenbach Lichtlabor
- **PV:** Soliker
- interior insulation: Remmers
- ventilation: Atrea

Others

- artificial lighting: Zumtobel, Tridonic
- daylight/shading: Warema
- interior insulation: Holzbau Wegscheider, Isocell
- acoustic absorbers: Organoid Technologies
- cultural heritage authority: BDA

