

D8.9 Educational Material for University Studies

Monitoring and control: Technology and methodology approach

Ing. Giacomo Paci Micrel Lab - DEIS - Università di Bologna giacomo.paci@unibo.it

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 260162

This document reflects only the author's views. The European Union is not liable for any use that may be made of the information contained therein.

Guiding principle

Presentation 1 Author: Giacomo Paci Partner: Università degli Studi di Bologna, Dipartimento DEIS (UNIBO) University course: TIS Innovation School Date: 2012/07/23 Place: TIS, Bolzano Title of the lesson: Monitoring and control: Technology and methodology approach Description of the contents: The lesson regards the monitoring and control concept and in particularly the development of sensors, sensor interfacing, data acquisition and transmission. Network infrastructure and protocol Name of the file: WP8_D8.9_20131007_UNIBO-Presentation 1

Lesson content

- Technical overview
 - Monitoring and control concept
 - Sensors
 - Sensor interfacing and data acquisition
 - Data transmission
 - Network infrastructure and protocol
- Commercial systems
 - X10
 - LonWorks
 - KNX
- Monitoring and control system design
 - "Palazzina della Viola" example

Lesson content

Technical overview

- Monitoring and control concept
- Sensors
- Sensor interfacing and data acquisition
- Data transmission
- Network infrastructure and protocol
- Commercial systems
 - X10
 - LonWorks
 - KNX
- Monitoring and control system design
 - "Palazzina della Viola" example

- To monitor or monitoring generally means to be aware of the state of a system
 - A system can be described as a collection of states
 - Each state is described by a batch of conditions
 - The change of state is typically triggered by an event
 - The monitoring aims to detect the system status

- To control generally means to force a system to reach a predefined state
 - The control can trigger events (called input) to reach the desired state
 - An output of a system is a condition that we want to control
 - A system is fully controllable if the triggered events can bring the system to have the desired output

• Example: Lighting control

- In a room without windows it is possible to control the lighting acting only to the light switch (fully controllable)
- In a room with windows we can not control the lighting only acting to the light switch (the system is partially controllable)
- Adding the possibility to act to the shadowing we can completely control the system

Open loop control system

Closed loop control system

Smart building: monitoring and control

Lesson content

Technical overview

- Monitoring and control concept
- Sensors

- Sensor interfacing and data acquisition
- Data transmission
- Network infrastructure and protocol
- Commercial systems
 - X10
 - LonWorks
 - KNX
- Monitoring and control system design
 - "Palazzina della Viola" example

 Sensor is a device that convert a physical stimulus (as heat, light, sound, pressure, magnetism, or a particular motion) to an electric stimulus

- The electric stimulus could be:
 - Voltage (e.i. Light sensors, microphone, gas sensors)
 - Current (e.i gas sensors, current sensors)
 - Resistance (temperature sensors, gas sensors, pressure sensors)
 - Capacitance (humidity sensors, acceleration sensors)
 - Frequency (velocity sensors, wind sensors)
- The sensor could need power supply or not
 - Microphone (self powered)
 - Temperature (need power supply)

Sensor characteristics

- Conversion characteristics, the function that convert the physical entity amount in the electrical stimulus amount (linear, quadratic, un linear etc.)
- Sensitivity, the capability to convert a certain amount of physical entity in a corresponding electrical amount.
- Range, the maximum and minimum amount of physical quantity that the sensor can detect.
- Resolution, is the degree to which repeated measurements under unchanged conditions show the same results
- Accuracy, is the degree of closeness of measurements to the physical entity true value.
- Tolerance, is the degree to which repeated measurements under unchanged condition with different entity of the same sensor show the same results. (Usually due to production variability)
- Response time, the time required to the sensor to go at equilibrium with the surrounding environment.
- Reading time, the time required to the sensor to collect the measurement

Sensor characteristics example

- Conversion characteristics, the function that convert the physical entity amount in the electrical stimulus amount (linear, quadratic, un linear etc.)
- Humidity sensor (linear)

Sensor characteristics example

- Sensitivity, the capability to convert a certain amount of physical entity in a corresponding electrical amount.
- Humidity sensor: 0.6 pF/%RH

- Sensor characteristics example
 - Range, the maximum and minimum amount of physical quantity that the sensor can detect.
- Humidity sensor: 0 to 100% RH

Sensor characteristics example

- Tolerance, is the degree to which repeated measurements under unchanged condition with different entity of the same sensor show the same results. (Usually due to production variability)
- Humidity sensor: ±20pF

Sensor characteristics example

- Response time, the time required to the sensor to go at equilibrium with the surrounding environment.
- Humidity sensor: 15sec

Characteristic	Min.	Тур.	Max.	Unit	Note
Normal capacitance	310	330	350	pF	at 55% RH
Sensitivity	0.55	0.60	0.65	pF/%RH	10% RH to 95% RH
Humidity hysteresis	-	±2	-	%RH	-
Linearity	-	±2	_	%RH	-
Response time	-	15	_	sec	30% RH to 90% RH
Temperature coefficient	0.15	0.16	0.17	pF/°C	5 °C to 70 °C [41 °F to 158 °F]
Long-term stability (drift)	-	0.2	_	%RH/year	-
Operating temperature range	-40 [-40]	_	120 [248]	°C [°F]	-
Operating humidity range	0%	-	100%	RH	-
Operating frequency range	1	_	100	kHz	-

SPECIFICATIONS (T_A= 25 °C [77 °F], Input Voltage = 1 V_{RMS}, Frequency = 20 kHz)

- Note: the measurement can be affected from others physical quantity. The humidity sensor is sensitive to the temperature!
- Note: the humidity sensor is affected by log term stability drift due to wear out process.

- Sensor characteristics example
 - Conversion characteristics, the function that convert the physical entity amount in the electrical stimulus amount (linear, quadratic, un linear etc.)
- Temperature sensor NTC (no linear)

Giacomo Paci

- Sensor characteristics example
 - Sensitivity, the capability to convert a certain amount of physical entity in a corresponding electrical amount.
- Temperature sensor NTC: change with the temperature

Giacomo Paci

Sensor characteristics example

- Resolution, is the degree to which repeated measurements under unchanged conditions show the same results
- Accuracy, is the degree of closeness of measurements to the physical entity true value.
- Temperature sensor digital (Sensirion SHT21)

Parameter	Condition	min	typ	max	Units
Resolution 1	14 bit		0.01		°C
Resolution	12 bit		0.04		°C
Accuracy	typ		±0.3		°C
tolerance ²	max	se	e Figure	3	°C
Repeatability			±0.1		°C
Operating Range	extended 4	-40		125	°C
Operating Mange	extended	-40		257	°F
Response Time ⁷	τ 63%	5		30	S
Long Term Drift			< 0.04		°C/yr

Lesson content

- Technical overview
 - Monitoring and control concept
 - Sensors
 - Sensor interfacing and data acquisition
 - Data transmission
 - Network infrastructure and protocol
- Commercial systems
 - X10
 - LonWorks
 - KNX
- Monitoring and control system design
 - "Palazzina della Viola" example

Sensor interface is usually an electronic circuit that provides the power supply to the sensor (if needed); filters the signals to eliminate unwanted noise; amplifies the signal and converts it in a form more suitable to be transmitted.

• The interface:

- It is usually responsible of the sensor resolution, which is essentially due to the signal noise ration capability of the circuit.
- More close is the interface to the sensor and better signal noise ratio it is possible to achieve at minor cost.
- The modern interfaces have an Analog to Digital Converter (ADC) that convert the electric signal in binary code string.
- If the sensor and the interfacing with ADC are built in the same package than it is a digital sensor. (e.i. SHT21)
- Digital sensors usually provides directly the measure of the physical quantity not the measure of the electric quantity

- Analog to Digital Conversion (ADC)
 - Analog to Digital converter is a circuit that typically translate a voltage in a binary digital string (or binary number)
 - The ADC main characteristics are:
 - Resolution, how many binary digits has the output string
 - Sample rate, how many string can the ADC take at each second

- Analog to Digital Conversion (ADC) resolution
 - An ADC can represent the entire range of signal input using the number of binary digits express in the resolution. Than if we have a 8 bits ADC it means that the entire range is divided in 2⁸ = 256 segments (signal quantization). Therefore the smallest number representable is a 1/256 of the maximum value.
 - E.i. If we have a linear temperature sensor raging from 0 to 100°C and we interface it with an 8 bit ADC, the minimum detectable temperature variation would be 100/256=0,39°C
 - The ADC resolution typically range from 8 bit to 24 bit

- Analog to Digital Conversion (ADC) sample rate
 - The sample rate is important to have da correct temporal representation of the signal
 - The Shannon theory explain that a signal as to be converted in digital form with at least double sample rate of the maximum frequency
 - E.i. music is sampled at 44,1Khz because we can hear till 20Khz

Analog to Digital Conversion (ADC) sample rate

Data logger

- A data logger collect the sensor information in a data storage with the timing information of the acquisition
 - Off the shelf there are data logger that have analog and digital interfaces to collect data from digital and analog sensors.
 - The analog interface main component is ADC, then it is characterized by digital resolution and sample rate as the ADC.

Commercial data logger

- There are commercial data logger with analog channel design to measure electric quantity as voltage, current, resistance, capacitance, etc.
- Most of the data loggers can be connected to a PC to program them and to show the data collected to the user
- Moreover there are software to elaborate the data in the way to obtain directly the value of the measured physical entity

Lesson content

- Technical overview
 - Monitoring and control concept
 - Sensors
 - Sensor interfacing and data acquisition
 - Data transmission
 - Network infrastructure and protocol
- Commercial systems
 - X10
 - LonWorks
 - KNX
- Monitoring and control system design
 - "Palazzina della Viola" example

Data transmission

 Transmission is the process to send information from a transmitter to a receiver throw a communication channel

- Transmitter is the electronic circuits that convert the digital data to a energy waves able to propagate throw the transmission medium (modulation)
- Receiver is the electronic circuits that convert the energy waves present in the transmission medium to a digital data (Demodulation)
- Transceiver is a transmitter and receiver in the same electronic circuit
- Data transmissions speed is characterized by the bit per second (bps), a byte is composed of eight bits.

Data transmission

Transmission medium

Receiver

• Transmission medium is the physical material that permit the propagation of energy waves.

• Data transmission typically use electromagnetic waves able to propagate in: Air, cables, optic fiber.

Transmission media usually used are:

- Air: Radio communication with a modulation that permit the division of the media with several radio channels. Each channel has is own carrier wave at fixed frequency.
- Cables: communication with a modulation that can divide the media with one or several radio channels.
 - The cable can have two or more wires. Two wires make a transmission line.
 - If a communication is done with one transmission line is called serial.
 - If a communication is done with more transmission lines is called parallel.
- Power line: The power line is used as transmission line with more than one radio channels; the AC power goes in the lower frequency channel meanwhile the information goes to the higher frequency channel

Data transmission

Transmission can be:

- Simplex one user to one or more users (television, Radio).
 - It use one radio channel and/or one transmission line

- Half duplex bidirectional but one user at time (Walkie talkie).
 - It use one radio channel and/or one transmission line

- Full duplex bidirectional two user contemporarily (telephone).
 - It use two radio channel and/or two transmission line

Lesson content

- Technical overview
 - Monitoring and control concept
 - Sensors
 - Sensor interfacing and data acquisition
 - Data transmission
 - Network infrastructure and protocol
- Commercial systems
 - X10
 - LonWorks
 - KNX
- Monitoring and control system design
 - "Palazzina della Viola" example

Network infrastructure and protocol

- Network is a collection of transceiver interconnected each others
- The network can have different topology
- Bus topology
 - Each transceiver is connected to the same transmission line and can communicate with every other transceiver
- Star topology
 - Each transceiver is connected to a dedicated transmission line and can communicate directly only with the center star transceiver
- Tree topology
 - Each transceiver (called also node) is connected to more dedicated transmission lines and can communicate directly with their parent and children
- Mesh topology
 - Each transceiver (called also node) is connected to a more dedicated transmission line and can communicate directly with several nodes

Network infrastructure and protocol

- Protocol is a collection of rules that each components of the network should respect to permit the communication and the execution of the services that the network will provide
- The protocol define:
 - Transmission data packet, that contain addressing information, command and data.
 - Commands (to manage and control the network)
 - Addressing rules
 - Network services
 - Network hierarchy
 - Modulation type
 - Physical characteristic of the transmission
 - The transmission medium

Network infrastructure and protocol

Routing and addressing can be:

Lesson content

- Technical overview
 - Monitoring and control concept
 - Sensors
 - Sensor interfacing and data acquisition
 - Data transmission
 - Network infrastructure and protocol
- Commercial systems
 - X10

- LonWorks
- KNX
- Monitoring and control system design
 - "Palazzina della Viola" example

- Standard introduced by the Pico Electronics in the 1975 with the aim to integrate at low cost lighting devices with controls devices.
- Use power line transmission.
- Still highly used, especially in the USA.
- It is typically constituted by a *Controller* and a certain amount of receivers, connected to power plugs.
- The transmission is typical unidirectional from the Controller to the receivers.
- The pretocol has been extended for bidirectional comunication but there are not many device able to do that (called Two-way)
- It is possible to build a network up to 256 receivers.

- Most used controller is the Marmitek CM11
- The data packet is composed by a start code and addressing field
- The start code is 1110.
- The addressing is composed by an house code and key code.
- The key codes can be an unit code or function code

	HOUSE CODES				кез	r co	DES			
	нı	H2	н4	нв		Dl	D2	D4	D8	Dl
- A	0	1	1	0	1	0	1	1	0	0
B	1	1	1	0	2	1	1	1	0	0
C	0	0	1	0	3	0	0	1	0	0
D	1	0	1	0	- 4	1	0	1	0	0
10	0	0	0	1	5	0	0	0	1	0
F	1	0	0	1	6	1	0	0	1	0
G	0	1	0	1	2	0	1	0	1	0
н	1	1	0	1	8	1	1	0	1	0
I	0	1	1	1	9	0	1	1	1	0
- J	1	1	1	1	10	1	1	1	1	0
ĸ	0	0	1	1	11	0	0	1	1	0
L	1	0	1	1	12	1	0	1	1	0
- M	0	0	0	0	13	0	0	0	0	0
N	1	0	0	0	14	1	0	0	0	0
•	0	1	0	0	15	0	1	0	0	0
• •	1	1	0	0	16	1	1	0	0	0
			A11	Unit	ts Off	0	0	0	0	1
			A11	Light	ts On	0	0	0	1	1
				-	On	0	0	1	0	1
					Off	0	0	1	1	1
					Dim	0	1	0	0	1
				B	right	0	1	0	1	1
			A11 I	Light	s Off	0	1	1	0	1
		E	Exte:	nded	Code	0	1	1	1	1
			Hai	1 Rec	quest	1	0	0	0	1
	- 1	fail	Ack	now	ledge	1	0	0	1	1
		_	Pr	e-Set	Dim	1	0	1	x	1
100	xten	ıded	Dat	a (an	alog)	1	1	0	0	1
				Statu	15=0N	1	1	0	1	1
		_	:	Statu	LS=Off	1	1	1	o	1
		51	tatu	s Ree	quest	1	1	1	1	1

B = 1110	F = 1001	J = 1111	N = 1000
C = 0010	G = 0101	K=0011	O = 0100
D = 1010	H = 1101	L = 1011	P = 1100

....and there are 9 other commands but they are rarely used.

• The producer offer devices that the address can be configure with a mechanical switch, or with proprietary bus commands.

Drawback

- Not compability between X10 for the USA market and the Eurpean market
- Low data rate
- Attenuation due to older appliance (as CRT monitor)
- Crosstalking between two near X10 network
- Sensitivity to the discharge lamps noise

Lesson content

- Technical overview
 - Monitoring and control concept
 - Sensors
 - Sensor interfacing and data acquisition
 - Data transmission
 - Network infrastructure and protocol
- Commercial systems
 - X10
 - LonWorks
 - KNX
- Monitoring and control system design
 - "Palazzina della Viola" example

- LonWork has been developed by Echelon as a communication technology that use the same protocol to interconnect devices connected to a different transmission medium, as twisted pair, power line, optic fiber and TCP/IP.
- Lon means Local Operating Network and identify network for transmit sensor and actuators status and data.

- LonWork has been developed by Echelon as a communication technology that use the same protocol to interconnect devices connected to a different transmission medium, as twisted pair, power line, optic fiber and TCP/IP.
- Lon means Local Operating Network and identify network for transmit sensor and actuators status and data.

- The comunication is based to the protocol LonTalk, which address different media
- LonWork rapidally spreaded in the building automation for HAVC (heating, ventilation, air conditioning), lighting, access control and fire allarm.
- LonWork has gained consideration in industrial sector and for the realizzation of smart metering
- In the last years LonWork is used for managing energy efficiency in smart building and reduce the mainteinance building cost

- The fundamental concept of the LonWork is to put the intelligence directly where the function is implemented, than in the sensors and actuators.
- The LonWork network is based upon three fundamental units:
 - LONTalk
 - Neuron Chip
 - LSN (Lonwork netowork service) that is the network operative system.
- Neuron chip is the Lonwork transceiver that automatically manage the protocol and permit an easy realization of lonwork device. Then a producer can realize a Lon device using the neuron chip without know anything about the Lon protocol.

Off the shelf are present LonWork trasceiver for:

- twisted pair cables
- Power line
- Radio transceiver for 400-470Mhz and 900Mhz
- Lonwork can manage huge network and provide a network infrastructure to realize all type off addressing (unicast, multicast, broadcast)
- The data packet is light and there is a priority police to permit the delivery in time of urgent data.

- The addressing is divided in domain, sub network, nodes to simplify the routing. Can be defined
- 2⁴⁸ Domain
- 127 sub-network in a domain
- 127 nodes in each sub-network.
- LonWork has network variables, that can be configure at installation time. It is possible to associate to a sensor output a variable which could be readed by an actuator automatically, using the binding process. The tool ICELAN provide all the support to do that.

- The addressing is divided in domain, sub network, nodes to simplify the routing. Can be defined
- 2⁴⁸ Domain
- 127 sub-network in a domain
- 127 nodes in each sub-network.
- LonWork has network variables, that can be configure at installation time. It is possible to associate to a sensor output a variable which could be read by an actuator automatically, using the binding process. The tool ICELAN provide all the support to do that.

Lesson content

- Technical overview
 - Monitoring and control concept
 - Sensors
 - Sensor interfacing and data acquisition
 - Data transmission
 - Network infrastructure and protocol
- Commercial systems
 - X10
 - LonWorks
 - KNX ·
- Monitoring and control system design
 - "Palazzina della Viola" example

- KNX is based up three precedent european standard.
- It is sutable for the creation of smart building thank its capability to excannge information between switch, actuators, motors and HAVC.
- KNX use different transmission media as:
 - Twisted pair
 - Powerline
 - RF at 868Mhz
- The comunication it is based to data points.
- A data point is a control variable of the system.
- A data point is inside a group object that is the functional system unit

- KNX is based up three precedent european standard.
- It is sutable for the creation of smart building thank its capability to excannge information between switch, actuators, motors and HAVC.
- KNX use different transmission media as:
 - Twisted pair
 - Powerline
 - RF at 868Mhz
- The comunication it is based to data points.
- A data point is a control variable of the system.
- A data point is inside a group object that is the functional system unit

- A device can read and write a data point.
- Then if a switch can write is status and a relay actuator can read the value, than the actuator can know when turn on or off the light in relation of the switch state.
- KNX is the bridge to permit the single node to write and read datapoints, creating the system

- Each device must have a logical address that identify univocally the device.
- The logical address is compose: 255 deivices in 15 main lines, insides at 15 areas and everytingh connected with the backbone line.
- The gruop object has its own obejct address
- More group object can be associated to the same object address (multicast)
- Gruop address the same structure of logical address

- In the market there are a lot of KNX devices, as sensors, actuators,
- Supervisor systems

Giacomo Paci

Lesson content

- Technical overview
 - Monitoring and control concept
 - Sensors
 - Sensor interfacing and data acquisition
 - Data transmission
 - Network infrastructure and protocol
- Commercial systems
 - X10
 - LonWorks
 - KNX

Monitoring and control system design

• "Palazzina della Viola" example

Palazzina della Viola

Giacomo Paci

Wireless sensor node used

- Sencult EFFICIENT ENERGY FOR EU CULTURAL HERITAGE
- 32Mhz 32Mbit microprocessor
- 2.4Ghz radio transceiver
- Zigbee Pro compliant
- Aggressive power management (sleep mode 8µA)
 for long battery life
- MicroSD card for local data logging
- On board sensors
- Temperature (0.01°C resolution)
- Humidity (0.04°C resolution)
- Light sensor (0.23 lx resolution)
- 3-axis accelerometer (1mg resolution)
- Gas sensor interface (10% resolution)
- VOC, CO, NHx, O3, NH4
- Analog input with 12bit resolution and 300khz sample rate
- 10 digital input/output
- 1 UART (convertible to RS232, RS422, USB)
- 1 I2C (used to communicate with IC sensors)
- 1 SPI (used to communicate with fast IC sensors and external Analog Digital converter)
- 3V 1.5W fully controlled DC output power supply for both external sensors and expansion board

Ad hoc developed wireless protocol

Main characteristics

- WSN fully configurable with multi-hop radio link capable to operate for years.
- Each device can be configured either by USB or remotely with radio link to:
 - Set the device ID, PAN ID, radio channel
 - Check the list of neighbor device with radio link quality
 - Select the network parent device in order to build up a network custom tree
 - Check sensor state (disable/enable), sample time and batteries voltage, check network parameters.
- The network coordinator uses the USB to:
 - Set each node sensor state (enable/disable)
 - Set sample time
 - Provide data collected from every device connected to the network
 - Set date

Underground floor

	/ later 000
7	а
9	51
12	4
13	21
15	22
17	111
20	112
23	891
74	39
76	1c9
79	1ca
82	1cb
85	1cc
88	1cd
91	1ce

Attic floor

ID	Address
27	23
29	119
32	8c9

Giacomo Paci

User Interface developed

Login to Cacti C ③ 137.204.213.210/index.php Raccolta Web Slice ③ Siti suggeriti Image: Altri P User Login Please enter your Cacti user name and password below: User Name: guest Password: ····• Login		
 C (137.204.213.210/index.php) Raccolta Web Slice (S Siti suggeriti) Altri P User Login Please enter your Cacti user name and password below: User Name: guest Password: Login 	Login to Cacti ×	
Raccolta Web Slice Siti suggeriti	← → C ③ 137.204.213.210/index.php	11 II I
User Login Please enter your Cacti user name and password below: User Name: guest Password: ••••• Login	😝 Raccolta Web Slice (🔇 Siti suggeriti	🧀 Altri Pr
Login	Please enter your Cacti user name and User Name: guest	User Login d password below:

Monitoring File Application Interface Download Level Data Database Storage Server Level Data Communication Acquisition Level Network protocol- ZigBee On Field Attack Level

The data are sent to a web server. The web server is accessible at the page: 137.204.213.210 User:guest Password:guest

Data collected sample

3encult

ENERGY FOR EU CULTURAL HERITAGE

Giacomo Paci