
EUROPEAN COMMISSION

 DG Research and Innovation

Seventh Framework Programme
Theme [EeB.ENV.2010.3.2.4-1]

[Compatible solutions for improving the energy
efficiency of historic buildings in urban areas]

Collaborative Project – GRANT AGREEMENT No. 260162

WP4: Monitoring & Control
D4.4: Report on development of BMS system

The European Union is not liable for any use that may be made of the
Information contained in this document which is merely representing

the authors view

D4.4: Report on developed BMS system

2

Technical References

Project Acronym 3ENCULT

Project Title Efficient ENergy for EU Cultural Heritage

Project Coordinator Alexandra Troi
EURAC research, Viale Druso 1, 39100 Bolzano/Italy
Alexandra.troi@eurac.edu

Project Duration 1 October 2010 – 31 March 2014 (42 Months)

Deliverable No. D4.4

Dissemination Level PU

Work Package WP 4 “Monitoring & Control”

Lead beneficiary 7 “CARTIF”

Contributing beneficiary(ies) 6 “USTUTT”, 13 “UNIBO”

Author(s) José L. Hernández

Co-author(s) Daniel Garcia

Date 31 March 2014

File Name WP4_D4.4_20140331_P07_Report BMS System

D4.4: Report on developed BMS system

3

Table of Content
0 Abstract .. 7

1 BMS Specification .. 8

1.1 Monitoring and controlling requirements ... 8

1.2 Architecture.. 9

1.2.1 Services definition.. 12

1.2.2 Software Environment ... 14

1.2.3 Hardware selection .. 15

1.3 BMS goodness .. 16

1.4 Interfaces definition ... 17

1.5 BMS Roles ... 20

1.6 BMS database ... 20

1.7 GUI definition ... 21

2 ZigBee specification and interface ... 23

3 BMS Services ... 25

3.1 Monitoring Service ... 25

3.2 Lighting Management Service ... 29

3.3 HVAC Service .. 30

3.4 Energy Consumption Management ... 33

3.5 Technical Alarms & Task Management ... 34

3.6 Data downloading .. 36

3.6.1 Available filters ... 37

3.6.2 Files format .. 37

3.7 Administrator tools ... 37

4 Real example of deployment .. 40

5 Future research lines.. 42

6 Central Server data collection .. 42

6.1 Architecture.. 43

6.1.1 Central Server database .. 44

6.2 Case Study connectors specification .. 46

6.2.1 CS1: Public Waaghaus – Bolzano... 47

6.2.2 CS2: Palazzo d’Accurso – Bologna ... 48

6.2.3 CS3: Palazzina della Viola – Bologna ... 50

6.2.4 CS5: Siegmair School – Innsbruck .. 50

6.2.4.1 Before refurbishment ... 50

6.2.4.2 After refurbishment .. 51

6.2.5 CS6: Warehouse City – Potsdam .. 52

6.2.6 CS7: School of Industrial Engineering – Béjar .. 52

D4.4: Report on developed BMS system

4

6.2.7 CS8: Strickbau – Appenzell ... 53

6.3 Application for monitoring and downloading data.. 53

7 References ... 55

D4.4: Report on developed BMS system

5

List of figures
Figure 1: Building Management System: Overall Architecture.. 10

Figure 2: Building Management Service: Software Architecture ... 12

Figure 3: Entity-Relationship and table diagrams ... 21

Figure 4: Generic screen for the 3EnCult GUI .. 22

Figure 5: Access screen to the Building Management System ... 25

Figure 6: Main monitoring screen of the system ... 26

Figure 7: Monitoring system classified by application fields .. 27

Figure 8: Application field view in the monitoring service .. 28

Figure 9: List of variables in the monitoring system .. 29

Figure 10: Lighting service .. 30

Figure 11: HVAC temperature service .. 31

Figure 12: HVAC relative humidity service .. 32

Figure 13: HVAC air quality service .. 33

Figure 14: Energy management service ... 34

Figure 15: Technical alarms .. 35

Figure 16: Creation of a new set-point for technical alarms .. 35

Figure 17: Task management service ... 36

Figure 18: Creation of a new scheduled task .. 36

Figure 19: Downloading data from the BMS ... 37

Figure 20: Enable and disable sensors ... 38

Figure 21: Deletion of historical data ... 38

Figure 22: Administrator tools for the BMS configuration .. 39

Figure 23: Tree scheme for the ZigBee sensor network ... 40

Figure 24: Distribution of the sensors in the test room .. 40

Figure 25: Central Server data collection architecture .. 43

Figure 26: Data exchange between the case study and Central Server ... 44

Figure 27: Entity-Relationship diagram for the Central Server database .. 45

Figure 28: Sequence diagram for the retrieval of information from case studies 46

Figure 29: Case study 2 data treatment .. 48

Figure 30: Monitoring interface for the Central Server .. 54

Figure 31: CS7 tab in the Central Server Web interface ... 54

D4.4: Report on developed BMS system

6

List of tables
Table 1: Comparison between PostgreSQL and Oracle ... 11

Table 2: Technical features of PostgreSQL database .. 15

Table 3: Minimum features of the computer in which BMS is allocated. ... 16

Table 4: Configuration of the motes in the test suite ... 41

Table 5: Final implementation of the Central Server tables .. 45

Table 6: Case Study 1 information format example .. 48

Table 7: Monitoring data format in the Case Study 2 .. 49

Table 8: Weather Station data format in the Case Study 2 ... 50

Table 9: Light measurements in the classrooms for the case study 5 .. 51

Table 10: Status measurements in the classrooms for the case study 5 .. 51

Table 11: CS5 after refurbishment data example ... 51

Table 12: Map of headers and values in the case study 6 .. 52

Table 13: Code translation for the sensors in the case study 6 .. 52

Table 14: Information format in the case study 7 .. 53

Table 15: CS8 example of data ... 53

D4.4: Report on developed BMS system

7

0 Abstract

This document contains the design, specification and drivers of the Building Management System
(BMS) as well as the services and interfaces to monitor and control such services. This Building
Management System is developed according the constraints presented by heritage buildings and
according to the ZigBee sensor network developed in the project in order to fullfil with the premises
required by this kind of constructions.

Due to the limitations which must be faced when working with historical buildings, the BMS must be
designed and developed gathering the biggest amount of information from the different case studies.
Therefore, taking into account the feedback of the case studies, the BMS has been defined as a
multiprotocol and multiservice platform, whose services can be adapted and upgraded to meet all the
buildings’ needs. Moreover, all the functionalities included in each service have been tunned with the
requirements and limitations of this kind of buildings in order to adapt them to the real needs of cultural
heritage buildings.

Additionally, different interface concepts have been designed and included in this document, with
special focus on strengthening the usability and bring the information to the user in an easy and
efficient way.

This deliverable is directly related to the rest of deliverables of the Work Package (WP) 4 because the
BMS is developed on to of ZigBee sensor network deployed in this WP. Moreover, the
recommendation of the monitoring system is another input for the deliverable in order to take into
consideration those variables included in such deliverable. Furthermore, the analysis of monitoring
and control algorithms was the last input for the BMS due of the integration of the patterns into the
plaform. Last but not least, this document is also related to the WP6 because one of the the goal of
the WP4 was the BMS deployment in the case studies, therefore, the characteristics of the buildings,
as well as specific context requirements, needed to be collected.

Finally, regarding the contribution of the partners, it was fundamental for the completion of the
deliverable. Not only the WP4 partners, but also the case studies responsibles collaborateed to the
finalisation of the tasks associated to the present deliverable. From one side, the WP4 partners have
helped with recommendations and ideas to the development of the BMS in several meetings,
feedback, etc. On the other hand, the case study responsibles have answered to the questionaires in
the design phase of the services, as well as providing the historical data so that the database has
been implemented.

D4.4: Report on developed BMS system

8

1 BMS Specification

A Building Management System (BMS) is a software high-technology computer-based system which
is installed on buildings for monitoring and controlling the equipment and facilities [1]. Some examples
for the equipment to be added in the BMS are the following:

• HVAC systems,
• lighting,
• shading/daylighting (when controllable),
• possible natural ventilation openings and further devices,
• power systems,
• fire systems,
• security systems.

A BMS is a complex, multi-level, multi-objective, integrated, interrelated and complete intelligent
design management information system [2] which mixes software and hardware. The software is the
entity in charge of the communication with the physical network and the wisdom of the application
components. On the other hand the hardware is the physical environment, both the devices, sensors,
actuators and the environment or facilities where the devices are placed.

The purpose of a Building Management System (BMS) is to automate and take control of the
operations of the facilities and actuators in the most efficient way possible for the occupiers/business,
within the constraints of the installed plant [1].

1.1 Monitoring and controlling requirements

The first step in all the processes when a software application is going to be developed is the definition
of the requirements [3][4]. These can be from an end-user point of view or from a technical point of
view. The end-user requirements are those defined from a user who is requesting some functionalities
and the language is based on non-technical one. Afterwards, a software expertise translates the end-
user requirements into technical ones which describe, in a specific language, the functionalities
desired for the development of the application [3][4]. In general, one end-user requirement is
translated into several technical ones. As it is logical, the technical is more specific and the end-user
requirement is a generic input for the software development.

For this project, it has been collected a set of end-user requirements which has been performed
through questionnaires asking for needs in each Case Study. Following, it is described the end-user
requirements:

1. RQ1: The BMS should generate an historical log with the values collected from the wireless
sensor network.

2. RQ2: The BMS should show the latest values read from the network.

3. RQ3: The BMS should be able to filter these values in application fields to be defined.

4. RQ4: The BMS should be able to access to several services so that the variables could be
managed in its own monitoring and control service.

5. RQ5: The BMS should integrate control access so as not to allow all the functionalities to all
the users accessing to the system.

6. RQ6: The BMS should allow users with privileges to download historical data.

7. RQ7: The BMS should be able to work out simple control algorithms.

These are the end-user requirements, but they have been translated into technical ones. These are
described below in order to collect all the functionalities needed for the system.

1. TR1: The BMS should be able to connect with the ZigBee sensors through a driver
communicating with the devices in order to read the information. (RQ1)

D4.4: Report on developed BMS system

9

2. TR2: The BMS should be able to send and read the commands implemented by the ZigBee
devices (RQ1).

3. TR3: The BMS should be able to store the data into a persitent way so as to maintain the
historical log of the information. (RQ1)

4. TR4: The BMS should print a screen showing the latest values stored in the persitent way so
that the user could visualize the data values. (RQ2)

5. TR5: The BMS should allow users to update the graphical interface for the up-to-date values.
(RQ2).

6. TR6: The BMS should filter the values and variables in function of several application fields
defined. (RQ3)

7. TR7: The BMS should show a view with the application fields and their variables/values
associated (RQ3).

8. TR8: The BMS should implement several services to be defined in order to associate the
variables read with each service (RQ4).

9. TR9: The BMS should develop a view for every service accessible from the main screen of the
application (RQ4).

10. TR10: The BMS should implement a management of users in order to filter the functionalities
allowed for each one (RQ5).

11. TR11: The BMS should filter the functionalities not allowed for the user logged in the system
(RQ5).

12. TR12: The BMS should implement some control access strategy for the logging in the system
such as nickname/password (RQ5).

13. TR13: The BMS should allow those users with privileges to download data from the historical
persistent log in a file format (RQ6).

14. TR14: The downloading functionality should be accessible from the main screen of the
application (RQ6).

15. TR15: Every service of the system should be able to calculate control patterns (e.g switching
on/off the lights) in function of the variables and values read (RQ7).

16. TR16: Every service should show a recommendation of the control pattern to be applied
(RQ7).

17. TR17: The BMS should be able to send the commands to control the facilites of the building, if
supported by the ZigBee sensors (RQ7).

Some additional requirements have to be added for including other aspects as the performance of the
BMS. Following, such requirements are specified.

18. TR18: A database should be used as storage of historical data.

19. TR19: The system should be able to respond in a limited time in order to allow a fluent activity.

20. TR20: The downloading of data should be done in a standar format as CSV, XLS or any other.

21. TR21: The BMS should use open-source technologies.

22. TR22: The BMS should be able to integrate other protocols (e.g. LonWorks) and their specific
reading and actuation commands.

1.2 Architecture

The defined BMS is a multiservice system that has been thought according to a service-oriented and
open architecture (SOA Architecture). This SOA architecture is a software design methodology based
on structured collections of discrete software modules, known as services that collectively provide the

D4.4: Report on developed BMS system

10

complete functionality of a large or complex software application [5]. Each module implements a
simpler functionality of the whole system and a well-known interface for the communication with the
remaining modules in order to allow the complete system functionality.

The general architecture of the BMS is showed in the scheme below:

Figure 1: Building Management System: Overall Architecture.

The general scheme for the SOA architecture is based on Java [6] and the Java Virtual Machine [7].
From bottom to top level, it could be found the hardware such as the sensors or actuators in the
sensor network. The next level is the operating system, but it is common the multi-platform
development, therefore, it is usually removed from the architecture. Following, the drivers needed for
the communication with the system are represented. It could be defined a unique driver or various
ones if different sensor network are deployed in the building or integrated in the same BMS. The Java
Virtual Machine is the level in charge of being transparent between the high level layers and the lower
ones. Next, one of the most important levels because OSGi is the framework which allows running the
SOA Architectures in a multi-service level and supporting the high level services. OSGi technology is a
set of specifications that defines a dynamic component system for Java. These specifications reduce
software complexity by providing a modular architecture for large-scale distributed systems as well as
small, embedded applications [8]. Thus, the deployment is easier in order to develop singles modules
working together. Next, the specific driver for the communication with the sensor network. It could
have one or several drivers which depend on either the number of different networks in the building or
the protocols integrated in the same network. Finally, the high level services (Building Management
Services) which represent the main functionality of the application. It is usually to define several simple
services working together for more complex behaviour of the whole system.

For the purpose of the 3ENCULT project a SOA architecture has been defined. It is slightly different to
the common one, but it is compliant with that. Thus, six levels have been defined (Figure 2) ommiting
the operating system and the drivers layers from the overall architecture. The purpose of the BMS is to
be multi-platform without being important the operating system. Therefore, the hardware level is
represented by the ZigBee devices. The OSGi framework has been developed through the Spring
Dynamic Modules framework [9]. This framework can be defined as a Java tool suite for integrating
several technologies in order to ease the software development with the help of the features for
injecting the dependencies of other modules. Also, it includes a Web server for running web
applications in an easy way.

The next layer is in charge of the communication with the ZigBee sensors developed in the deliverable
4.3 [10]. It has been defined a set of commands which are able to send request to the network and
receive the information and the responses from the coordinator of the network. More information will
be detailed in following sections.

D4.4: Report on developed BMS system

11

On the top layer, about the Building Management Services, it has been splitted into two sublayers:
Business Logic and other services. First of all, the business logic sublayer is the one in charge of
dispatching the communications to the database or to the high level services. It receives the data from
the driver and manages the information in order to store it in the database. It also sends the variables
and values to the high level services and receives the requests from these services. In summary, it is
the main node for the communications among the driver, the high level services and the database.
Thus, it coordinates the connection among the modules for the suitable behaviour of the whole
system. Secondly, the high level services are responsible for the monitoring and downloading system.
For visualization purposes, a graphical user interface based on Google Web Toolkit [11] has been
implemented. GWT is a development toolkit for building and optimizing complex browser-based
applications [11]. Another high level service is the CSV (Comma-Separated Values) which frames the
file for downloading data. This service is based on a Java library for formatting a file containing the
information. Finally, the services are those defined for the project and they will be detailed more in
advance.

In parallel of the architecture, it is presented a vertical layer which is responsible for the
communication with the persistent way, i.e. the database. It has been decided the use of PostgreSQL
[12] as database for the project. In a comparison with Oracle [13], PostgreSQL offers reliability, data
integrity, and correctness, as well as it is compliant with the standard SQL:2008 [14][15]. Moreover, it
offers interfaces with several programming languages such as C#, C++ and Java. In depth, Oracle
presents the same features, but it adds robustness and a large amount of data to the database size.
However, the disadvantage of Oracle is the license for using it (more than 1000$). Therefore, taken
into account the requirements for the BMS persistent storage, PostgreSQL applies for the conditions
and it is an open-source database. Thus, the usage of a free license software allows the replicability
and scalability in other buildings. That means, if the database is Oracle compliant, then a new license
is needed, being the price of the BMS deployment higher than a PosgreSQL database. On the other
hand, a building could install the present BMS without the need of buying any license or external
software, being easier the integration of the platform.

Feature Oracle PostgreSQL
Data types

compatibility
Subset of SQL'92 types plus specific types Broad set of native data types

Constraints level Very good (primary and foreign key and
check constraint)

Very good (primary and foreign key
and check constraint restricted)

Views Yes Yes, but using rules
Transactions Very good (including rollback) Very good (without rollback)
Multi-users Yes, no limit Yes, limited

Back-up Yes Yes, not online
Scalability Parallel multi-thread Not threated
Analitical

processing
Yes No

Data size limit Limited only by max. number of columns
and max. size of columns of specific data

types.

16k maximum

Table 1: Comparison between PostgreSQL and Oracle

For the communication between the business logic and this database, it has been used the Hibernate
framework [16] which is a useful toolkit for connecting any database. The Hibernate framework eases
the development of an object-based application such as the Java language. Due to the relational
aspect of the database, the managing of object is quite complex. However, the Hibernate mapping
context solves this problem and it provides persitent objects as interface with the tables of the
database [16]. Thus, these objects are easier to handle in the Java framework.

At last but not least, it is necessary a server for deploying all the modules and the framework. As well-
known servers are Equinox [17] and Felix [18]. Both of them implement the OSGi R4 Service Platform,
but Equinox is integrated with Eclipse which is the environment for the Java development. Therefore,

D4.4: Report on developed BMS system

12

Equinox is chosen for the deployment of the BMS in order to ease the development according to the
guidelines provided by Eclipse.

Figure 2: Building Management Service: Software Architecture

1.2.1 Services definition
Given the operational limitations related to the development of innovation activities in historical
buildings, mainly related to legal issues and heritage conservation, all these actuations must be
defined and specified after a careful analysis of all the factors and agents involved in this scenario,
from the technical ones such as structure, facilities and cultural collections; to the administrative ones
such as regulations, ownership and general acceptance.

Under this premises, the services of the 3EnCult’s BMS have been thought and designed to respect
all the limitations associated to the Case Study buildings involved in the project, and since they are
nothing but a display of the different typologies of historical buildings in Europe, these services are
aimed at being compatible and applicable to all the heritage buildings around Europe. On the other
hand side, we cannot forget that the main objective of the BMS is to contribute to lower the energy
consumption of this big bunch of historical buildings and enhance the energy efficiency of the building
operation to achieve an acceptable level adapted to this time more than to the period when those
buildings where designed and built.

To this end, an intermediate solution was adopted, in order to balance out the heritage limitations, the
energy efficiency requirements and the technical limitations related to the use of monitoring devices
specially designed to meet the restrictions associated to these buildings instead of using commercial
devices designed to be installed in environments with no shape, size or position limitations.

In the particular case of the 3EnCult project, these devices have been developed by UniBo under the
activities of the Task 4.2 and their main functionalities and features are specified in the deliverable 4.3
[10]. As it can be seen in that list of characteristics, the devices have different monitoring capacities
but, due to their wireless nature, the control capabilities could not be added for space and autonomy
reasons. Therefore if the BMS is connected only to the WSN, it cannot control actuators. In this case
the system has been designed not to send any control commands to actuators. Instead, these control
commands are replaced by a “best practices” system, which will provide the responsibles of the
building with the necessary suggestions to modify the building systems’ operation and improve
thereby the energy efficiency of the overall building operation [19][20]. These indications will be
notified to the maintenance responsible by means of both direct pop-up windows in the main interface
of the BMS and indirect communication using mail or text message. That means, the BMS informs the
user, calculating the most energy efficient behaviour based on a control algorithm and the values
measured. Nevertheless, it directly depends on the requirements of the building and this control
algorithm must be adapted in any single case owing to the specific needs. Meanwhile if the BMS is
connected to the WSN and a building automation bus, like LonWork, as in the current deployment site
(CS7), the BMS detects the occupancy pattern at the current moment and the comfort status in the

D4.4: Report on developed BMS system

 13

room, being able to determine when and how to switch on/off lights and/or HVAC system. In fact, in
this particular case, the BMS is integrated into the current LonWorks monitoring system and it is acting
as a data collector and a support of the algorithm, emitting the information to the LonWorks network
able to actuate through the available actuators. Therefore, there is no pop-up channel of
communciation, but a Web page with the status of the actuators in order to report the current state.

Once the technical limitations of the devices have been set, the other factor to be considered is the
one related to the specific requirements of the historical buildings, particularly, those buildings involved
in 3EnCult project. To gather all the requirements, a questionnaire was developed and sent to the
buildings’ reponsibles in order to perfectly define the capabilities of the BMS, using as references all
the common needs and limitations gathered from the 8 case studies. In most cases, the technical
requirements are related to the need of enhancing the efficiency of the building’s systems, such as
lighting and HVAC, whereas the limitations are set by the regulations protecting several of those
systems being considered heritage themselves.

Finally, summing up all those common needs and limitations of the historic buildings and relating them
with the technical features of the monitoring devices, a number of services have been defined and
developed in the framework of this project. The following list contains those BMS services together
with their main capabilities and outcomes.

Lighting Service:

The lighting service is designed in order to collect the light level data, as well as the actuator and
sensor status sent back by the sensor network.

According to the recommendations, the BMS includes the calculation in near real-time of the best
indoor condition which means, according the measurement and the value considered as lighting
comfort level, the BMS suggests to switch on/off the light.

Additional functionality is the graphical visualization of the measurements that could help the user to
manage te facilities in a better way.

HVAC Service:

With regard to the HVAC service, three different data points have been identified: temperature,
Relative Humidity and the air quality (CO2 concentration). Moreover, the status of the sensor for each
device is also gathered so as to know the quality of the measurements. This includes the graphical
representation of the values in order to help the user to know the behaviour of the systems.

The control algorithms come from [19][20], and the BMS includes an additional statistic plug-in design
for the calculation of working and users’ behaviour patters (if useful for the control algorithms), as well
as recommendations of utilization of the systems in real-time (depending on the user’s actions).

Energy Monitoring Service:

About the energy service, the BMS collects the electricity and thermal consumption (if available)
measured by the ZigBee sensors. With these variables and the price of the electricity, the service
works the total costs out. Also, statistical analysis is designed, such as the calculation of average
consumption, possible savings and so on. This functionality has not been completely included in the
BMS because it depends on the deployment itself, i.e. country (electricity price, tarifs systems, etc.),
specific control algorithm and requirements. Therefore, in function of the building, before installation,
the service must be adapted to the needs.

In addition, the consumption and the costs are represented together in a graphical view.

Technical Alarms & Task Management Service:

At the moment of writing the deliverable, the ZigBee sensor are not ready to receive any control
command, therefore, the task management service is not deployed but developed. This service allows
the scheduling of any task to be performed, as for example, switching off the lights at 21:00 every day.

Regarding the technical alarms, the definition of set-points and thresholds for the variables of any
device is available. Afterwards, this services creates a log of alarms when any restriction is violated
which could be viewed in the service screen. Furthermore, the BMS sends a mail to the administrator
of the system when a constraint is violated.

D4.4: Report on developed BMS system

 14

1.2.2 Software Environment

The technology selected to BMS software application is the OSGi framework, based on SOA
architecture.

SOA

Service-Oriented Architecture [5] is a set of methodologies for developing software through
interoperable services. The SOA is oriented to interoperability and to work with standards-based
development as a fundamental principle in order to be able to adapt to the continuous change of the
business requisites. Therefore, in the SOA context, integration solutions can be developed using
standard design techniques and then implemented using standards-based software components [21].

The SOA development proposes a set of roles: client, provider, aggregator and operator. On other
hand several services level are defined: basic services, composed services and managed services
[22]. The functionalities are dependent of the services level. Basic services functionalities are capacity,
interface, QoS and services publication, services discovery, services selection and services binding
[21][22]. Composed service level offers coordination, advanced QoS functionalities and monitoring
services. Managed services level offer deployment and support functionalities.

The main feature of this architecture is the interest in the contract between the points, but not in the
interfaces. So, the consumer is independent from the service implementation.

Other features of SOA are [21][22]:

• Reusable services: The services can be used in other developments because they are
following the standards of OSGi.

• Loosely coupled services: The services are not highly coupled, being almost independent.
• Possibility of service-wrapped: There is an ability to wrap several services for specific goals.
• Possibility of services composition: A service could be compound of several simpler ones.
• Stateless services: The services are lazy being instanciated only when needed.
• Self-managed services: The services are managed itself without the intervention of users.
• Exposed services: The services are exposed by well-established interfaces.
• Dynamic discover: A service can discover dinamically another service.

OSGi

OSGi framework defines a standard, non-proprietary and free software SOA architecture for
manufacturers, services providers and developers. The scope is the development of different
platforms and interoperable components to provide multiple services [23] .

In OSGI framework different components run in a single JVM (minimizing the memory footprint and
increasing performance). OSGi provides a flexible deployment Application Programming Interface
(API) that controls the lifecycle of applications. Applications are installed with a standardized
deployment format (.jar archive with JAVA code and other resources) and can then be started,
stopped, updated, and uninstalled without requiring the JVM to be restarted.

OSGi framework allows applications to dynamically discover and use services provided by other
applications running inside the same OSGi Service Platform [8][23]. Because of this cooperation OSGi
components are much smaller than other java application servers (less memory requirements).

Besides, there are several implementations of OSGi frameworks with interoperable and standardized
components and services already developed: Logging, Configuration, HTTP, XML, Wiring, IO, Event
Handling, User Authentication...

D4.4: Report on developed BMS system

 15

POSTGRESQL

PostgreSQL [12] is a powerful, open source object-relational database system. It offers a set of
features where it is included reliability, data integrity, and correctness. It runs on all major operating
systems, including Linux, UNIX and Windows. It is fully ACID (Atomicity, Consistency, Isolation and
Durability) compliant, has full support for foreign keys, joins, views, triggers, and stored procedures (in
multiple languages). It includes most SQL:2008 [14] data types. It also supports storage of binary
large objects, including pictures, sounds, or video. It has native programming interfaces for C/C++,
Java, .Net, Perl, Python, Ruby, Tcl, ODBC, among others, and complete documentation [12].

To summarise, the following table shows several technical characteristics:

Limit Value

Maximum Database Size Unlimited

Maximum Table Size 32 TB

Maximum Row Size 1.6 TB

Maximum Field Size 1 GB

Maximum Rows per Table Unlimited

Maximum Columns per Table 250 - 1600 depending on column types

Maximum Indexes per Table Unlimited

Table 2: Technical features of PostgreSQL database

PostgreSQL offers many advantages [12]:

• Immunity to over-deployment: Over-deployment is what some proprietary database vendors
regard as their licence compliance problem. With PostgreSQL, no-one can sue you for
breaking licensing agreements, as there is no associated licensing cost for the software.

• Better support than the proprietary vendors
• Significant saving on staffing costs: Lower maintenance and tuning requirements than the

leading proprietary databases, yet still retain all of the features, stability, and performance.
• Legendary reliability and stability: No reporting crashes during the activity operation.
• Extensible: Code available for further customizable adaptations.
• Cross platform: PostgreSQL is available for almost every brand of Unix and Windows.
• Designed for high volume environments
• GUI database design and administration tools: Easy-to-manage.

EQUINOX

Equinox is an implementation of the OSGi R4 core framework specification, a set of bundles that
implement various optional OSGi services and other infrastructure for running OSGi-based systems.
Equinox implements a wide array of standard OSGi services as well as many additional modules. The
goal of the Equinox project is to be a first class OSGi community and foster the vision of Eclipse as a
landscape of bundles [17].

1.2.3 Hardware selection
In order to get the maximum performance from the BMS Services, it is important to select a suitable
hardware platform, which meets all the technical requirements of the software one. To this effect, a

D4.4: Report on developed BMS system

 16

research has been done, analyzing all the possibilities available on the market. Among all these
possibilities, the most suitable ones have been listed in this document:

• Embedded device: Using an embedded device to run these type of applications is very
typical, given that it requires less physical space and, normally, the microprocessor
requirements are not a key factor. In our case, the BMS requires a medium/high
microprocessor performance, and other features listed below, so we discarded this choice.
The limitations found are:

o Limited microprocessor performance.

o Little memory space to save the monitoring data and BMS configurations.

o Additional keyboard or touch panel to manage and set up the services.

• Netbook: The netbook fulfills part of the requirements which are not covered by the
embedded devices; however, this type of devices also lack memory space and
microprocessor performance, and finally, they include a screen, which is not a main feature to
run the BMS.

• Personal Computer: After analyzing all these devices, we consider that the best solution to
fulfill the BMS requirements is the use of a standard personal computer or touch panel, in
which both the microprocessor performance and memory are enough powerful to guarantee
the fluent and correct working of the system.

In the next table there are showed the minimum features required to run the BMS:

Microprocessor Dual-core processor

Speed 1,5 GHz minimum

RAM Memory 2 GB minimum

Connectivity Network Card

USB port

Hard Disk 300 GB minimum

Screen not mandatory, but recommendable

Operating System Linux/Windows

Table 3: Minimum features of the computer in which BMS is allocated.

1.3 BMS goodness

All the software systems answer to specific parameters which indicate the goodness of the software
application. These properties are defined for knowing the capabilities of the software components. In
the BMS developed in the 3EnCult scoped, there are defined several characteristics as follows:

• Reliability: It indicates the amount of time which the system is working and available. In this
case, the usage of Equinox server assures that almost the 100% of the time the service is
available. The unavailability of the system is due to computer or connectivity problems.

• Interoperability: That is the capability of communicating different services and entities in order
to provide a service in a transparent way. OSGi, and more concrete, Spring Dynamic
Modules, offers transparent interfaces for the interconnection among services and entities so
as to exchange information.

• Scalability: SOA provides loosely-coupled services, which allows the integration of new
services in the platform, increasing the number of them. Moreover, the sensor network could

D4.4: Report on developed BMS system

 17

be incremented with the only limitation of the wireless sensor network because the BMS
receives the information as data streams that can be managed by the services.

• Replicability: The development of the BMS has been done through open software and
standards, therefore, the BMS could be replicated in any other building.

1.4 Interfaces definition

For the interoperability among all the bundles and modules deployed in the BMS, it is needed the
definition of the interfaces for the communication. Thus, the following interfaces are identified:

1. I1 – ZigBee driver and business logic layer

This interface is in charge of the communication between the sensor network, which is compliant with
ZigBee by means of using commands, and the business logic layer that represents the core of the
BMS. As it will be explained in detail in the section 2, the communication is done through a set of
commands for different purposes. Furthermore, the data is periodically sent to the BMS as a character
stream with the information. The values have to be interpreted before being stored into the database,
therefore, the format of the information must be known.

2. I2 – Services and business logic layer

For visualization purposes, the Graphical User Interface is designed and implemented with the Google
Web Toolkit (GWT) technology. As it is detailed in section 1.7, GWT works in a client/server model
where the client only contains the implementation of the screen; meanwhile the server takes over the
communication with lower layers and retrieves the information to be shown in the interface. Therefore,
the interface I2 is the related to the server with the business logic. For that purpose, Spring Dynamic
Modules [9] technology is used. The Spring Dynamic Modules (SDM) is an Execution Environment for
the OSGi framework which allows the use of dependency injection through the Inversion of Control
feature (IoC) and service abstraction [9]. It eases the inclusion of Spring technology features in the
bundles of an OSGi framework. In such way, SDM allows instantiating, configuring, assembling, and
decorating components within and across modules, as well as controlling the life cycle of the
components in the platform. With these advantages, the BMS in 3EnCult integrates SDM in the
interface between the core and the graphical user interface, making use of the IoC characteristic. The
IoC is one of the key features in Spring because it avoids the insertion of Java code in the modules for
seeking the references in a service. Thus, the bundle code does not need to search for the interface in
the service registry, but the Spring framework is in charge of the service registry access, controlled by
XML files in the bundle JAR (Inversion of Control). For registering services, the bundle must declare
the properties of the interface; meanwhile the listener has to specify the reference to the service.
Then, the Spring framework inserts the service references automatically in the reference object in the
Java code. An example of how to use services is below where the tag osgi:service declares the
service with an “Id”, the “reference” and the “interface”. For consuming a service, the bean and
osgi:reference are the useful tags. The former tag specifies the “class” making use of the service,
the “property” in the class which is the instance of the service and the “reference” to the service. This
“id” is also used as a reference by the latter tag for listening to the service. Thus, this second tag
refers to the bean and the interface implementing the service.

<xml version="1.0" encoding="UTF-8"?>;
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd">

 <osgi:service id="simpleService" ref="simpleService"
 interface="org.xyz.MyService" />

D4.4: Report on developed BMS system

 18

 <bean id="simpleConsumer" class="org.xyz.MyServiceImpl">
 <property name="attribute" ref="simpleService"></property>
 </bean>
 <osgi:reference id="simpleConsumer" interface="org.xyz.MyService"/>
</beans>

3. I3 – GWT and services

As aforementioned, GWT has two parts, and, in this case, the client is the main component which
integrates the services screens. Thus, this interface represents the communication between the client
side of GWT and every service. Two mechanisms working together establish the communication
interface. First of all, the SDM framework is used for the reference to each service in order to inject the
dependency of the service reference automatically instead of looking for the declaration of the service.
On the other hand, once the service reference is known, the dispatching is done through dynamic URL
where the base of the URL is always the same and it includes properties such as the name of the
service and the user logged in the system. Therefore, the interface is composed by the SDM
framework and HTTP mechanisms so as to redirect to the appropriate service.

4. I4 – CSV and business logic layer

The CSV service is in charge of downloading historical data based on several available filters (section
3.6). This functionality needs to contact with the business logic layer to retrieve the historical data
requested by the user. Despite being another sub-layer in the system architecture, for easing the
development, it has been included in the core of the business logic layer as an additional Java
module, therefore, the communication mechanism used is the internal for Java objects references
included in the Java Development Kit.

5. I5 – Business logic layer and Hibernate

Hibernate [16] is a framework for the communication with databases in order to help the development
of persistence. In this way, the goal is to store Java Objects beyond the scope of the JVM. However,
the common databases are relational without the ability of understanding objects as persistent
information. That is the paradigm mismatch where an object cannot be directly mapped into a
relational database. [16] presents the following five challenges addressed by Hibernate:

− Granularity. The object model is more granular than the relational model because it has more
classes than the number of corresponding tables in the database.

− Subtypes (inheritance). Relational databases do not define any kind of inheritance which is
common in object programming languages.

− Identity. Relational databases define exactly one notion of 'sameness': the primary key,
whereas objects define both object identity (a==b) and object equality (a.equals(b)).

− Associations. Object relationships are represented in a unidirectional way; meanwhile the
relationships in databases are ‘foreign keys’ which are bidirectional.

− Data navigation. In objects the navigation is from one association to another walking through
the object network which maximizes the SQL queries, being not desirable.

For making use of Hibernate technology, there are several libraries which can be integrated in Java.
However, in 3EnCult, the design of the BMS follows scalability, replicability and modularity premises.
Thus, these libraries are deployed as an independent OSGi module. Nevertheless, the usage of the
communication interfaces is reduced to the management of the Java object references with Hibernate.
In order to include the reference of the Hibernate object, the IoC mechanism mentioned before is
followed. Once, the object instance is injected, the interface uses the objects for the communication
among the different entities.

6. I6 – Hibernate and PostgreSQL

Finally, the last interface is the communication between the Hibernate framework and the physical
implementation of the database, in this project PostgreSQL. Hibernate allows the development of
persistent classes, following object-oriented idioms including inheritance, polymorphism, association,
composition, and the Java collections framework, which are mapped into tables in the database.
Moreover, it does not require any interface or classes and offers high performance supporting lazy
initialisation. Other important features are the stability, quality, reliability and scalability, being usable in

D4.4: Report on developed BMS system

 19

any environment. Finally, Hibernate enables the usage of Hibernate Query Language (HQL) instead of
native SQL, avoiding the knowledge of this language [16].

First of all, as mentioned, Hibernate allows the development of persistent classes. For such purpose,
mapping configuration files are required which map the Java class and its attributes into the table and
its fields or columns. A typical mapping file is as follows. First of all, the class is mapped into the table
with the tag <class>. After that, the primary key must be specified in the tag <id> indicating the type
of generation that in the example is a auto-incremental sequence. With the tags <property>, the
mapping between the column and the atrribute in the Java class is specified. Finally, the relationship
one to many or many to one could be detailed, being this kind of relationships a set of multiple objects
stored in the database. In the example, the many to one relationship is detailed.

<hibernate-mapping>
<class name="JavaClass" table="TableName">
 <id name="Attribute1" column="PrimeryKey" type="Integer">
 <generator class="sequence">
 <param name="sequence">SequenceName</param>
 </generator>
 </id>
 <property column="Column1" lazy="false" name="Name" type="String"/>
 <property column="Column2" name="Attribute2" type="Timestamp"/>
 <property column="Column3" name="Attribute3" type="Integer"/>
 <many-to-one cascade="all" name="Set" class="Class2" fetch="join">
 <column name="Column4" />
 </many-to-one>
</class>
</hibernate-mapping>

This file is enough for mapping the classes and the tables, but it is not sufficient for the communication
with the database. For that, a configuration file is needed in order to establish the information for the
connectivity with the database. A common configuration file is below. Firstly, the dialect to be used is
specified which, in this case, is PostgreSQL one. Thus, in the Java code, it could be used HQL that is
generic and it does not need any further change if the database manufacturer changes, increasing the
scalability and replicability of the BMS. Moreover, the driver for the communication is established. The
following three properties are necessary for the connection where the database URL, username and
password are detailed. These are mandatory because Hibernate requires the communication patterns
for the connectivity. Additional properties in the example are the pool size that determined the amount
of simultaneous connections are available, the creation of the script of the database and if the
developer wants to show the SQL query implemented by Hibernate. Last but not least, the list of
mapping files are included (i.e. one property for each mapping file).

<hibernate-configuration>
 <session-factory>
 <property
name="hibernate.dialect">org.hibernate.dialect.PostgreSQLDialect</property>
 <property
name="hibernate.connection.driver_class">org.postgresql.Driver</property>
 <property name="hibernate.connection.username">postgres</property>
 <property name="hibernate.connection.password">password</property>
 <property
name="hibernate.connection.url">jdbc:postgresql://localhost:5432/hibernated
b</property>
 <property name="connection_pool_size">1</property>
 <property name="hbm2ddl.auto">create</property>
 <property name="show_sql">true</property>
 <mapping class="mappingfile.hbm.xml"/>
 </session-factory>

D4.4: Report on developed BMS system

 20

</hibernate-configuration>

1.5 BMS Roles

In a typical BMS service is important to consider different roles in order to establish some access
constraints, so that the information can be properly divided in different access levels. At the moment,
four user profiles have been taken into account:

1. Admin : this user is set up to configure the application and database. Thus, values from
database can be added, modified or updated in order to obtain devices identifiers, application
fields and variables.

In addition, the administrator can configure the devices and sensors, which involve the ability
to create, modify or delete devices/application fields or attributes data. Moreover, the
administrator can enable/disable the sensors on devices, reset the network, establish sleep
time and enable/disable the capability of the coordinator to join new devices.

The admin manages users and profiles from database. Furthermore, it can create new users,
change profiles or delete users/profiles, which imply the possibility to change the user’s
permission to access application context.

Apart from the configuration capabilities, the admin has total access to the rest of the
interfaces defined, like those aimed to monitor and download data.

2. Project user : this kind of user is considered in order to give monitor and download data access
to project members. Thus, the data can be studied by project members through graphical and
table interfaces. Additionally, a user interface will be defined to monitor the variables from
devices in real time.

3. External user : this user has permission to access to application by means of login/password
or free login. The difference between that user and the previous one is the possibility to
download data. Unlike project user, external users have not permission to download data from
the application.

4. Maintenance user : a user defined to have total access to control devices. This role is an
extended version of the project user, adding the ability to manage control devices, such as
HVAC and lighting devices. Moreover, it is in charge of the confguration of the BMS such as
application fields, users in the system, management of the sensor network, etc.

1.6 BMS database

The BMS needs a database to collect both the monitoring and configuration data. Furthermore,
independent services need to save important information in the database, in order to guarantee a
correct working.

In 3EnCult case, the database selected is SQL based, specifically PosgreSQL [12], which collects the
attributes, variables and configuration data. The communication between the BMS Services with the
database is performed through Hibernate.

In Figure 3 is represented the entity-relationship scheme which is the basis of the database. In this
diagram the tables and the fields for each table are printed and they store the information of the BMS
in the persistent way. These diagram is translated into a SQL data definition language in order to
create the skeleton for the database and initialize the tables needed. On the other hand, it is shown
the table attribute where the main data will be stored. However, in the representation does not appear,
but in the final implementation there are monthly tables which store data for each month. That is a
performance requirement because when the number of rows in a table exceeds an amount of data the
response time is exponencially increased. By the way, less amount of data increases the performance
of the database. The management of the concept of big data is a current problem in all the software
platforms which store and read a lot of rows in a database. As explained before, Oracle performance
is better than PostgreSQL in the management of big data. Nevertheless, a good maintenance and
design of the database could afford with this problem. That is the reason why the attribute table has

D4.4: Report on developed BMS system

 21

been divided into twelve instances, one for each month of the year. Moreover, the creation and usage
of indexes and performance tools for database administrator speeds up the queries.

Figure 3: Entity-Relationship and table diagrams

1.7 GUI definition

Several approaches are available in the market for the development of Graphical User Interfaces:
Swing, SwingX, AWT, SWT or GWT are some examples. The final decision is the use of Google Web
Toolkit owing to the features presented. To summarise, GWT [11] is a development toolkit for building
and optimizing complex browser-based applications and is open source, completely free, and used by
thousands of developers around the world, therefore, the documentation is extensive. GWT enables
productive and high-performance development of web-applications. It is based on JavaScript and Ajax
languages, but avoiding the complexity of them. The developer implements the GUI in a common Java

D4.4: Report on developed BMS system

 22

code through the Java APIs and the compiler is in charge of translating this code into optimized and
stand-alone Ajax and JavaScript. The great advantage is that it can be run across all major browsers,
but also mobile phones.

Always, a GWT project is divided into two parts following a client/server model. The client is a stand-
alone compiled code which is downloaded into the browser as a cache provider in order to speed up
the loading of the Web pages. On the other hand, the server is running remotely in some machine and
it offers the functionality for communicating to external services, performing some calculations and so
on. The internal communication between the client and the server is done through Remote Procedure
Calls (RPC) that is a specific Web Service. The server could itself perform the action or delegate the
operations. Thus, in the 3EnCult project, when the client is loading, it requests the information to the
server side which delegates the operation to the business logic layer through the aforementioned
interface.

The design of the Graphical User Interface has been based on the Figure 4, which represents the
most generic screen for the whole BMS. The remaining screens have followed the same structure, but
taking into account the privileges of each user in order to filter the possibilities of management. For
this reason, it has been avoided the inclusion of all the graphical design that could increase the
document too much without adding crucial information.

Figure 4: Generic screen for the 3EnCult GUI

D4.4: Report on developed BMS system

 23

2 ZigBee specification and interface

The developed driver to connect with Zigbee devices is, obviously, JAVA based. The implementation
has been completed by using the available Java libraries for the communication with the USB ports in
a computer. More concrete, the Java Simple Serial Connector libraries available in Google Code blog
[24] has been used. It is able to support several platforms: Win32 (Win98-Win8), Win64, Linux (x86,
x86-64, ARM), Solaris (x86, x86-64), Mac OS X 10.5 and higher (x86, x86-64, PPC, PPC64) which
increases the replicability of the system.

The driver contains the logic of program and communicates the physical Zigbee devices with the
bottom layer of the BMS, allowing to share information between them. Additionally, it manages the
events in the interface and the communication with database. Thus, it operates with the commands
defined and interacts with the devices. The list of commands implemented in the driver are the
following:

• p � Change the on board sensors on/off. It means enable or disable sensor measurements in
a concrete device by sending, for instance, p001100. The example deactivates the two first
sensors and the last two sensors, meanwhile the two intermediate sensors are enabled.

• r � Reset the network.
• w � Set up the sleep time in the nodes. For example, sending w=600 means the sleep time in

the nodes is established to 10 minutes.

Besides the control commands, the format of the data received is necessary so that the BMS would be
able to understand the information. Thus, the following strem shows an example of a data flow
separated by semicolon. The explanation of each field is detailed below where the numbers represent
the token in between the semicolons.

15/03/2012 10.47.24;427; DATA NODE ID;0000;00001;0000;0000;-068;2995;2343;00048;-
2124;0000;000000;000000;0003;0004;0017;0013;1058;0011;2800;1266874889709549989;00000000

1) Date: day/month/year hour.minute.second.millisecond
2) DATA NODE ID it is a print to make a very little bit more readable the print
3) Node ID, it is a number that univocally identify the wsn node in the network
4) packet number, identify how many sensor sample the node has done till now
5) short address, it is the network address assigned to the node
6) parent short address, it is the short address where the node will send its data
7) Link Quality, it is the dbm value of the radio signal strength
8) temperature, it is the temperature collected from the sensor present in the board, the value it

is expressed in 0.01C, i.e. 1544=15.44C
9) humidity, it is the humidity collected from the sensor present in the board, the value it is

expressed in 0.01%RH, i.e. 2631=26.31%RH
10) light intensity, it is the light intensity collected form the on board sensor and it is expressed in

lux
11) External temperature, it is the temperature collected from an external temperature sensor, the

value it is expressed in 0.01C, i.e. 1506=15.06C
12) gas sensor, provide the resistance of the gas sensor and it is expressed in 100ohm, 0=sensor

not present, 100=10Kohm
13) Current sensor for building monitor (current clamp), current intensity expressed in microA
14) Current sensor, power expressed in microWatt
15) Accelerometer, vibration intensity in the x axis expressed in mG
16) Accelerometer, vibration intensity in the y axis expressed in mG
17) Accelerometer, vibration intensity in the z axis expressed in mG
18) Accelerometer, static acceleration to detect gravitational acceleration position axis x

expressed in mG (near 1000 if the G is in the axis)
19) Accelerometer, static acceleration to detect gravitational acceleration position axis y

expressed in mG (near 1000 if the G is in the axis)

D4.4: Report on developed BMS system

 24

20) Accelerometer, static acceleration to detect gravitational acceleration position axis z
expressed in mG (near 1000 if the G is in the axis)

21) Battery voltage expressed in mV, i.e. 2611=2.611V
22) Battery charge burned, the battery charge burned until now, expressed in microCoulomb

(divide to 3.600.000,00 to have mAh)
23) Debug field

D4.4: Report on developed BMS system

 25

3 BMS Services

Before accessing to the platform, it is required the login making use of the main screen shown in the
Figure 5 which contains fields for including the nickname and password owing to privileges definition.
The right side of the picture displays the status of the system when the access is tried and the BMS is
checking the privileges of the user.

Figure 5: Access screen to the Building Management System

3.1 Monitoring Service

The monitoring interface allows the users and admin access to the data collected using sensors and
meters installed in a specific system and stored in a database. The main guidelines followed to
develop the monitoring service are listed below:

• The monitoring data will be divided in the different application fields considered in 3EnCult
Project: comfort, energy consumption and climate attack.

• Rapid transitions between different information (related to different rooms or systems) have
been developed so that the user is able to collect the required data in an easy manner.

• Rapid access to download data through standard files (.csv files). Apart from an easy way to
look up the data, a choice to download data in this standard file is available.

When login is correct, the next interface is shown; otherwise, an error message would pop up to
inform user about the error. Figure 6 is the main monitoring interface that, by default, draws the
devices tab and displays the list of devices jointly the latest values measured for each device, as well
as the timestamp related to the measurement. In the top of the screen, there are the main controls for
accessing to the services, downloading historical data, updating values and logging out.

All the monitoring updates are managed via “refresh” button. The coordinator collects data from
sensors and update the database automatically. With the update, the application reads again the data
in the database and shows latest values. All users have enabled this button to watch both attributes
and values.

The services buttons allow the access to the different services, i.e. lighting service, HVAC, energy,
alarms and task management.

D4.4: Report on developed BMS system

 26

Figure 6: Main monitoring screen of the system

Another interface is aimed to show the application field (Figure 7) and its variables associated. Thus,
for each application field a table with the device that read, variable name, timestamp and value is
shown. Note here, the variables are those related to the specific application field and the device is the
responsible for the measurement. Another application fields can be obtained by change view inside
the application field in the stack panel (Figure 8).

D4.4: Report on developed BMS system

 27

Figure 7: Monitoring system classified by applicati on fields

D4.4: Report on developed BMS system

 28

Figure 8: Application field view in the monitoring service

Finally, the last interface screen is aimed to show the device’s variables independently. It is composed
by a table containing all variables, including name, associated device and sensor, timestamp and
value (Figure 9).

D4.4: Report on developed BMS system

 29

Figure 9: List of variables in the monitoring syste m

3.2 Lighting Management Service

A typical monitoring interface consists of two main and separated parts, one aimed to access the
historical data and download them in a file, and other part oriented to monitor the real-time variations
of those parameters measured. For that purpose, Figure 10 divides the screen in these two parts. On
the left side, the list of devices with the latest value for the light level and the timestamp is displayed.
However, on the right side, a graph is drawn according to the filters selected (i.e. time slot and device
to be represented). On the bottom, there is a button to calculate the patterns, but as aforementioned,
these patters are not still deployed due to the specific requirements in every building (i.e. control
algorithm).

Thus, the functionalities of this service will be applicable only if lighting sensors and/or actuators are
installed and activated in the building. At the moment, only the lighting data collection and sensor
status are shown. Nevertheless, as future line the following features are planned:

• Statistics calculation: hours of utilization, manual and automatic working.
• System’s working statistics: Calculation of working and users’ behavior patterns.
• Best practices: alerts with recommendations of utilization of the systems in real-time.

(depending on the user’s actions)

Finally, two links have been added, the former links to the monitoring in order to give to the user the
possibility of downloading the data; the latter links with the control interface, which will be developed to
support those case studies with light control devices installed.

D4.4: Report on developed BMS system

 30

Figure 10: Lighting service

3.3 HVAC Service

This service will be applicable only if HVAC systems, sensors and/or actuators and control devices are
installed in the building. The features which will be implemented as part of the 3EnCult project
development are listed below:

• Data collection: Building performance, including Temperature, Relative Humidity and CO2.
• Statistics calculation: hours of utilization, manual and automatic working.
• System’s working statistics: Calculation of working and users’ behavior patterns.
• Best practices: alerts and notifications with use of the system recommendations in real-time.

(depending on the user’s actions)

At the same as lighting service, the current feature available is the data collection, meanwhile further
characteristics are left as future line for any partner looking for integrating control algotihms and
commands, as well as other projects re-using as input this BMS in order to improve the system. It
means, the BMS is designed to be adaptative to the typology and requirements of the buildings.

Three different variables are taken into consideration in this service: Temperature, relative humidity
and air quality (CO2). The structure of the service is the same than the lighting service, but in the
graphs side, the drawing could be also filtered by the variable such as it is shown in the Figure 11,
Figure 12 and Figure 13.

D4.4: Report on developed BMS system

 31

Figure 11: HVAC temperature service

D4.4: Report on developed BMS system

 32

Figure 12: HVAC relative humidity service

D4.4: Report on developed BMS system

 33

Figure 13: HVAC air quality service

3.4 Energy Consumption Management

Applicable only if consumption information is available or consumption meters and sensors are
installed in the building. The features which will be implemented as part of the 3EnCult project
development are listed below:

• Data collection: Electrical consumption information.
• Calculations and graphical representation: consumptions, costs, averages.
• Best practices: alerts and notifications with recommendations to save energy and money in

real-time.

At the moment of writing the document, the devices do not have any external probe in order to
measure the electrical consumption, therefore, the values presented by the sensor are always ‘0’
(Figure 14). The service is represented in the same way than the previous ones. However, it is already
worked out the costs taking into account the price of the electricity (configurable). Moreover, the
electrical consumption and the associated costs in each application field are illustrated on the left side
of the screen.

D4.4: Report on developed BMS system

 34

Figure 14: Energy management service

3.5 Technical Alarms & Task Management

First of all, the technical alarms service is deployed in order to configure set-points and thresholds
which could help to determine any malfunctioning in the system. Therefore, based on the values
received though the ZigBee network and in comparison with the thresholds, the system could detect
any mistake in the measurements, a value out of range, out of the comfort level, low battery of the
sensors, malfunction of any sensor/actuator and so on. The features which will be implemented as
part of the 3EnCult project development are listed below:

• Technical problems detection and mail notification sending in real-time.
• Possibility of programming tasks to be deployed automatically.
• Set up technical alarms, users’ configuration following best practices and energy efficiency

guidelines.

The screen for this service is completely different because the goal of this service differs from the
illustration of measured information. Figure 15 shows an example of the technical alarms service. In
this case, in the top appears the list of alarms generated by the system where the number associated
to the alarm, the description, the cause and the date when launched are displayed. Below, the list of
set points defined in the system

D4.4: Report on developed BMS system

 35

Figure 15: Technical alarms

For the creation of new set-points which raise alarms when a new measurement is coming to the
BMS, there is a button that launches a screen like Figure 16. In the configuration of a new set-point,
the device, variable and threshold must be chosen. When created, the set-point appears in the list of
the technical alarms in order to inform the user about the alarms.

Figure 16: Creation of a new set-point for technica l alarms

With regard to the task management service, it is not fully available at the moment because the
ZigBee devices are unable to receive control commands. However, the service is developed as a
future line in the ZigBee devices. In spite of the CS7 deployment uses control devices, it is
transparently done because the actuation is automatic instead of planned. The main features are:

• Scheduled tasks for sending control commands to the network so as to program automatic
control algorithms (for instance, switch on the lights all the days at 13:00).

• Monitoring of the scheduled tasks in the platform.

The service screen is shown in the Figure 17 where the stack panel with the list of devices is printed.
In each device, the user could display the programmed tasks or create a new one by clicking on the
button. Thus, a pop-up panel is launched like Figure 18 where a description has to be established for

D4.4: Report on developed BMS system

 36

knowing the control command, the date when it will be launched or all the days and the time of the
day. As mentioned, the service is incomplete and it will include new feature after inserting the control
commands in the ZigBee devices.

Figure 17: Task management service

Figure 18: Creation of a new scheduled task

3.6 Data downloading

An important service in every BMS is the capability for downloading data from the database. Often, the
BMSs are not able to show a lot of values for performance and user-friendly view concerns.
Nevertheless, a lot of times, for the analysis of the trend and performance level of some parameter, it
is needed a log with the historical data. For such reason, the BMS offers this service available in the
main screen.

D4.4: Report on developed BMS system

 37

3.6.1 Available filters
First of all, it is required the definition of a set of filters for downloading data. At this moment, when the
download button is clicked, a pop-up panel is launched where the user can select the application field,
device or variable, as well as the time slot where the data is required. This time slot is mandatory, but
the three other possible filters are optional (only one mandatory). For example, if the user chooses
only application field, all the variables in the time slot associated with this application field will be
downloaded in a file. Furthermore, if the user selects also a device, the values related to the
application field and this concrete device will be downloaded. It is important to note that it is allowed
only the selection of a single device. The reason resides in performance issues. Taking into
consideration the large amount of data in the database when the sensor network is increasing, the
response time for downloading data from multiple devices in a big time slot could be too long.
Moreover, the Java Virtual Machine space is limited and it could be overflow generating an exception
“Java.lang.OutOfMemoryError: Java heap space”.

Figure 19: Downloading data from the BMS

3.6.2 Files format
Each user, with the suitable permissions, can download data into CSV documents. The functionality to
download data creates a new document gathering the data selected, in which the path and name for
documents can be configured by the user.

Regarding the format of the document, the CSV document distributes the data in columns, containing
the following information:

· Attribute name: defines the type of device/sensor and its place.
· Attribute value: shows the measurement of the sensor.
· Time and date: indicates when the attribute was collected.
· Device associated to data: integer value that indicates device which got sensor value.

Between columns there are field dividers to separate data. These are defined as commas. Then, when
the CSV document is opened, it is needed to specify the divider.

3.7 Administrator tools

Finally, the last current service is the Administrator tools. As super-user, the capability of this user is
more than others. This user frequently is the person in charge of the configuration of the sensor
network and the BMS itself. For this reason, the main screen for this user is slightly different than other
users. It is based on the basic one, but it includes more functionality. Firstly, it appears a field where
the time for sleeping nodes in order to establish the time in which the nodes will sleep before sending
a new measurement. Secondly, there is a button “Reset network” which restarts the network, cleans
the caches and tables in the coordinator and the network is set up again. Finally, for each device it is
available a set of checkers for the sensors in the device in order to enable or disable the
measurement. All of these functionalities send the appropriate command as explained in the section 2
about the ZigBee driver.

D4.4: Report on developed BMS system

 38

Figure 20: Enable and disable sensors

Another feature available in the ‘Variable’ tab is the deletion of historical data. Sometimes, it could be
necessary to clean the database. For such purpose, at the bottom of the page, it is included this
functionality (Figure 21) which offers two possibilities: delete all the data before a date or delete all the
data associated to a device.

Figure 21: Deletion of historical data

Finally, an administrator tab is integrated for this user where some specific administrator tools are
available (Figure 22). First of all, the administrator is the only user able to create, modify or delete
users. Thus, the list of current users and correspondent roles is shown with the buttons for creation,
modification of an existing user or deletion of any user.

Furthermore, the list of devices is below. This part is very important because it has several meanings.
Firstly, this list is the set of devices saved in the database. Secondly, they are the devices displayed in
the graphical user interface. And finally, only the values associated to these devices will be stored in
the database. Therefore, if a new device is installed or deleted in the sensor network, the administrator
has to update also the BMS system.

D4.4: Report on developed BMS system

 39

Last, there is a configuration set for the application fields where the application fields registered in the
BMS are shown with the related sensors. The administrator could register a new application field,
modify a current one (name or sensors associated) or delete any.

Figure 22: Administrator tools for the BMS configur ation

D4.4: Report on developed BMS system

 40

4 Real example of deployment

The CS7: Engineering School of Béjar has been the chosen as test suite for the BMS system. In order
to test the latest version of the BMS with the optimized database and the latest version of the firmware
of the motes, a ZigBee sensor deployment is required. Figure 23 shows the tree scheme of the
deployment where the coordinator is the root and the remaining motes are connected each other in a
parent-child scheme. Figure 24 displays the distribution of the motes in the test room (library) where
the sensor network has been installed.

Figure 23: Tree scheme for the ZigBee sensor networ k

Figure 24: Distribution of the sensors in the test room

The configuration of the nodes is required for the appropriate behaviour of the network. Parameters as
the node number, address, parent identifier, time slot to broadcast the values and the sleep times are
necessary. Table 4 shows the properties set up in each device in the network where the time slot is
calculated depending on the motes in between the final node and the coordinator. By default, all the
sensors available in the devices have been enabled.

D4.4: Report on developed BMS system

 41

Node identifier Address Parent address Time slot Sleep time (sec)

1 0x0001 0x0000 1 600

2 0x0002 0x0001 2 600

3 0x0003 0x0002 3 600

4 0x0004 0x0005 3 600

5 0x0005 0x0000 2 600

6 0x0006 0x0001 4 600

Table 4: Configuration of the motes in the test sui te

The BMS is deployed since 28th of October 2013 and the behaviour is stable where measurements are
collected periodically (each 10 minutes as recommended in [10]). The examples of services in the
current document are taken directly from this deployment, being not needed the replication of the
screen in this chapter.

D4.4: Report on developed BMS system

 42

5 Future research lines

As it has been remarked in the previous sections, at the current status, the BMS do not exploit the
actuation potential, because of the lack of control commands in the wireless sensor nodes. However,
by integrating/adapting the control algorithm in the services, the platform is able to generate
recommendations and guidelines for the actuation. Nevertheless, a future line of the development is
the integration of the control commands in the sensor network taking into consideration that these
devices are capable of extending the monitoring functionalities to actuation with KNX devices [10].
Thus, the BMS could adapt the output of the control algorithms from the services to control signals
going through the communication driver and allowing the real-time intervention in the building facilities.

Moreover, another open point is the integration of other monitoring and control network protocols. The
aforementioned lack of actuation could also be solved by adding other communication protocols, such
as LonWorks or KNX. This further integration is possible due to the openness of the BMS design. In
this phase, it was taken into account the replicability and scalability of the system, therefore, the
adaptation of the BMS is a task which can be carried out. In fact, in an internal research line, it has
being studied the possibilities of integrating the LonWorks network interface in the communication
driver of the BMS. In the case study 7: Engineering School of Bejar, it has been performed a control
strategy though a LonWorks network in combination with the wireless monitoring system. The
functionality of the whole system foresees the storage of the information from the ZigBee network into
a database, then the LonWorks network allow the access to the information and the actuation of the
control strategy. A step forward is the inclusion of the communication driver into the BMS, allowing the
actuation of the control strategies by the BMS itself, through the sending of output signals to the
LonWorks network interface. At the moment of writing this document, that is not finished (it is out of
the scope of the project, but an added value) and it is an open point for the research process.

Furthermore, the BMS is adaptable to different control algorithms in function of the requirements of the
building. Thus, by way of integrating the control strategy into the services, the BMS will be able to
work out multiple algorithms. However, during the project lifecycle, the platform has not been deployed
in all the case studies and a future study is the integration of several control algorithms to be deployed
in multiple buildings. Sometimes, for these control algorithms are required the inclusion of additional
monitoring data, such as weather forecast. Then, within this adjustment, the integration of more data
sources needs to be faced.

Moreover, future developments of the BMS include the continuously progressing of the database.
Several adaptations have been accomplished for the big-data concept, but this issue is always
growing up, therefore, in order to align it with the new technologies and solutions, it is needed the
steady commissioning. That means the progressing in database systems and technologies for the
management of more and more data in persistent manner. Another current trending topic is the cloud.
The current status of the BMS is the distributed system by means of distributed OSGi and Spring
Dynamic Modules technologies, but further research for the conversion to cloud could be carried out,
to provide services in a cloud without the need of the physical deployment in the building.

D4.4: Report on developed BMS system

 43

6 Central Server data collection

6.1 Architecture

Before any intervention or actuation in a building, it is very important the diagnosis phase. Within this
phase, it is found the monitoring task. This collects the information being sensed in the rooms and
facilities of the building in order to determine the behaviour.

Each building has a different installation of the sensors both at protocol level and data collection.
However, a common thing is the need of maintaining an historical log of the information. For that
purpose, it has been developed an architecture system so as to collect the information for all the case
studies in the project. As it has been said before, the information could be stored in several ways: files,
databases, data loggers in the BMS and so on. Also, another complexity level involves the various
data format for the sensors.

To solve these gaps, the architecture shown in the Figure 25 is suggested. Studying the eight case
studies, it has been detected three ways for exchanging the data: (1) remote access to the database,
(2) email with the files or (3) FTP connection. Yet, the option 2 is discarded because of the complexity
for the automation. Almost all the case studies offer a FTP Server in order to access to the files, but in
some cases a database is available.

Figure 25: Central Server data collection architect ure

The preferable approach is the first one because the treatment of the information is easier and more
efficient. On the other hand, the options 2 and 3 present some disadvantages or requirements which
are summarised in the following points:

D4.4: Report on developed BMS system

 44

• Option 2
o Requires an email with permission
o Requires download data in files
o Requires FTP to GET/PUT csv files from email
o Requires translates csv files to SQL data

• Option 3
o Requires download data in files
o Requires FTP Server & Client
o Requires translates csv files to SQL data

Due to the different sources and formats of information, one Java application is implemented for each
case study. All the Java applications are quite similar, running the same tasks: connection to the
server, download the data, manage the information for a common format and store in the database.
The differences are regarding the type of connection and the management of the information because
of the data format. It has to be noted the Java applications are running in the Central Server side in
order to store the information in the local database.

This operation process is represented in the Figure 26. In the case study side there are the sensor
network, the interface to collect the data and the driver which stores the information both in a database
and in a file. In some cases it is also included the graphical interface for visualization. From the
Central Server side, the Java application requests the data which are retrieved from the case study.
For that purpose, the application has a periodic thread that connects the interfaces, downloads the
information, treats the data and stores it in the local database.

Figure 26: Data exchange between the case study and Central Server

The requirements for running the connectors are the following:

• Java Virtual Machine (JVM) in any Operating System
• Enough hard disk in order to store the data from the Case Studies
• Case study connectivity

o SQL database (preferably PostgreSQL) in the cases of local databases
o FTP Server in those case studies with files data loggers

6.1.1 Central Server database
In order to store the information in a persistent way, it is needed a local database installed in the
Central Server. The database trademark chosen has been PostgreSQL: the same of the BMS. In this
case, the needs for storage are more restricted because of the large amount of data. Therefore, it has
been taken into account this constraint.

In comparison with the BMS database, the entity-relationship diagram is much easier because the
requirements of the storage capabilities are less restricted. That is to say, the purpose of the local
database is the storage of raw data without the need of filtering services, alarms and so on. Thus, the
diagram is the one shown in the Figure 27, which includes the list of devices for the case studies and
the attributes as main entities.

D4.4: Report on developed BMS system

 45

Figure 27: Entity-Relationship diagram for the Cent ral Server database

The device entity contains the identifier, description for the device, place where it is installed and the
case study related to the device. Thus, with a unique table is enough for all the devices of the whole
installations. With regard to the attribute table a problem with the capacity of storage of each table has
been found. As it happened in the case of the BMS, but emphasized because of the amount of data,
an overflow of information could be problematic. More than one million of rows in a single table is not
well-handled in the PostgreSQL databases, therefore, it is needed an optimization. In the Central
Server side, the decision has been the duplicate of the attribute table for every single case study and
month. That is to say, there are twelve tables for each case study containing the monthly data, being
in total 96 tables in the database which causes difficulties in the software development being
necessary the sort of the information depending on the month and the case study. However, the major
advantage is the time response when the application tries to store or retrieve data from the database.

Once the database and the Java collectors were deployed in the Central Server the storage of data
run. Thus, the final implementation of the database and its contents can be seen in the screen shown
in the Table 5. The tables contain the common format name where CSX represents the Case Study,
followed by the space, if known, the variable read and the device which is reading the values.

Table 5: Final implementation of the Central Server tables

D4.4: Report on developed BMS system

 46

6.2 Case Study connectors specification

This chapter gives an overview about the files format for the case studies and a brief explanation
regarding the collection of information through the Java application. Before, it is described some
general issues about the connectors as a user’s guideline in order to run and perform every single
application in the Central Server.

First of all, data translator application can be run into Windows or Linux/Unix operating systems. In
first case, the running application are called “Process” whereas in second one “Daemon”. Specifically,
it is a periodic application because of it being working when timer goes off. Both of them are the same
concept and work with the same objective. That is downloading data from a remote computer which
stores data from sensors, translating it into a common pattern and, finally, storing in a central server
database. To do this, it is being followed a sequential scheme, as it is shown below. The first step is
the creation of the connections between computer where application is running and remote server.
Those can be FTP or database connection. Also, it is opened connection with local database so as to
store the information. Next, it is downloaded data through database or FTP way. It depends on the
manner in which data is stored. In function of the kind of data, translation is made in different way due
to FTP needs to read files meanwhile database requires to read a set of columns in a special form
because of the various tables. After that, data is set in a common language to be stored in central
server database. Last but not least, connections are closed.

Figure 28: Sequence diagram for the retrieval of in formation from case studies

On the other hand, the Java connectors include a properties file for the suitable configuration of the
application. First, it can be configured the timer for the periodic reading of data and it depends on the
data logger in every case study. It means, for example, if the data logger stores data every day it does
not make sense to run the collector every 12 hours, but more than one day. On the other hand, there
is a property for the type of connection: FTP, DDBB or LOCAL. FTP means the connection through
the FTP Server. With DDBB, it is established the communication with a database in the case study.
Finally, LOCAL is a special FTP because the aim is read and copy local files in the computer. It is
specific for the Case Study 1.

#Time value in millis for scheduled task
general.timer=7200000
#Type of connection --> Possible values: FTP, DDBB or LOCAL
general.connection=FTP

Afterwards, there are two databases to be configured. If the connection is DDBB, the two set of
properties must be completed, but in the two remaining cases (FTP or LOCAL), the only set is about
the local database (Central Server database). The information to be provided includes the address,
name, port and user.

#Data for destination data
general.subsistema2=localDDBB

D4.4: Report on developed BMS system

 47

localDDBB.name=dbname
localDDBB.IPAddress=ipaddress
localDDBB.port=5432
localDDBB.user=user
localDDBB.password=password
localDDBB.type=postgresql
#Properties for source data
general.subsistema1=remoteDDBB
remoteDDBB.name=ddbbname
remoteDDBB.IPAddress=ipaddress
remoteDDBB.port=5432
remoteDDBB.user=user
remoteDDBB.password=password
remoteDDBB.type=postgresql

If the connection is through FTP Server, the related properties have to be determined. That is to say,
IP address, port, user, remote data path where the application will find the data log files, local data
path where the application will copy the files in the local computer and the file type of the data logs
(dat, txt, csv and so on).

#Remote datapath where files can be found
ftp.remoteDataPath=/
#Local datapath where files are stored
ftp.localDataPath=localDataPath
ftp.IPAddress=ipaddress
ftp.hostName=3encult
ftp.port=21
ftp.user=user
ftp.password=pass
ftp.filetype=dat

Finally, the LOCAL way is a special one from the FTP. In such case, the only parameters are the data
paths where the files are placed, where the files will be copied and the file type.

Finally, so that the connector runs it is needed the installation of the Java Virtual Machine. It has to be
assured any Java version is installed in the computer. Once, it is ensured, with the command java –jar
file_name.jar in a Windows terminal, in the same folder of the jar file, it is run the collector. In the new
version it can be performed automatically through .bar files which start up when Windows is launched.

6.2.1 CS1: Public Waaghaus – Bolzano
The Case Study 1 is a special case for the FTP connection because in the same computer it is stored
the data logs for the sensor network. Then, it is not efficient to do a FTP connection with the same
machine. To solve this performance issue the LOCAL manner has been deployed. In this case, the
application copies the file from the source folder to a secondary temporal one.

These files have to be translated so that the information could be stored in the database. For that
purpose, it is needed the format of these files. An example is shown in the Table 6 where a device is
printed.

Measuring
group TH AB01 416

Channel A1 A2 A3 A4

Device 0_0 0_1 0_2 0_3

Kind of
sensor

ST ST ST

Sensor
number

12 33 11

Sensor

2nd basement - room 1st basement - room 5 - 1st basement - room 5 -

D4.4: Report on developed BMS system

 48

position 1 -Surface
Temperature - north

Surface Temperature -
south

Surface Temperature -
west

Value
number 0 1 2 3

01-02-2012 /00:01:16 -48.64 8.84 8.37 -76.45 9.42 75.42

Table 6: Case Study 1 information format example

Every device offers 12 channels where the information is read. However some channels are unused
and this information has to be discarded in order not to overflow the database with inappropriate data.
Next, the kind of sensor is specified: ST (Surface Temperature); AT (Air Temperature) and AH (Air
Humidity) mainly. Also, the sensor number and the position are described jointly the data-point index.
Thus, in the bottom of the Table 6, it is an example of the data stream following the file format.

6.2.2 CS2: Palazzo d’Accurso – Bologna
In the case study 2 the communication is done through a FTP Server but it is not directly to the
computer sited on the Palazzo d’Accurso. The CS2 arranges a MySQL database but it does not allow
external connection, therefore, it is discarded. On the other hand, due to problems with the
configuration of FTP Server in the case study, it has been enabled a folder in the computer for the
CS7 where the files are put. Thus, the process for this case study is:

1. Backup of the information in the MySQL database in SQL format.
2. Renaming the file in txt format.
3. Copy weather files in the same folder than monitoring data.
4. Zip the files.
5. Send to the FTP Server in the CS7.

The scheme is the followed in the Figure 29.

Figure 29: Case study 2 data treatment

Once the files are in the server side at Case Study 7, the Java collector connects via FTP to the server
to download the files in the Central Server computer. After that, the process is the same: read files,
translate information and store data. As it happened in the previous case study, it is necessary the
format of data for the files. In this case, there are two kinds of files. The first one is the monitoring
information and the second is the Weather Station data.

The Table 7 shows the data format for the monitoring system in the CS2. There is a field for the
number of the node in order to identify the sensor reading the variables. Also, there are several fields
for the temperatures and relative humidity. These values are measured through a voltage in the inputs
and these are not the final one. That is to say, it is needed a conversion for obtaining the temperature
or relative humidity. The formulas are also described in the table and they are the major complexity in

D4.4: Report on developed BMS system

 49

this connector because of the dependency between value and conversion. Thus, the Java application
implements these equations in order to store the suitable value for each field in the data log file of the
monitoring system in the CS2.

Table 7: Monitoring data format in the Case Study 2

On the other hand, the second file is related to the Weather Station in the CS2 and its format is shown
in the Table 8. The yellow fields are the only available readings. Therefore, the application has to filter
the unused variables and it should only store the suitable ones.

Column Item Format Comments

1 record number integer starts at 1
2 transfer date yyyy-mm-dd

hh:mm:ss
date and time (according to computer, not
weather station) of transfer from station to file

3 reading date yyyy-mm-dd
hh:mm:ss

date and time of record. Appears to be
derived from computer's clock at time of
transfer

4 reading interval integer minutes since previous reading
5 indoor humidity integer relative humidity percent
6 indoor temperature floating point degrees centigrade
7 outdoor humidity integer relative humidity percent
8 outdoor temperature floating point degrees centigrade
9 dew point floating point degrees centigrade. See comments below

10 wind chill floating point degrees centigrade. See comments below
11 absolute pressure floating point millibars
12 relative pressure floating point millibars
13 wind average floating point metres / second
14 wind average integer Beaufort
15 wind gust floating point metres / second
16 wind gust integer Beaufort
17 wind direction integer 0 to 15. 0 is north, 1 is NNE, 8 is south, 15 is

NNW
18 wind direction text ENE appears as NEE, ESE appears as SEE
19 rain 'ticks' integer cumulative count of number of times rain

gauge has tipped. Resets to zero if station's
batteries removed

20 rain total floating point mm rain total. Column 19 * 0.3, but does not
reset to zero, stays fixed until ticks catch up

21 rain since last reading floating point mm

D4.4: Report on developed BMS system

 50

22 rain in last hour floating point mm
23 rain in last 24 hours floating point mm
24 rain in last 7 days floating point mm
25 rain in last 30 days floating point mm
26 rain total or in last year? floating point mm.
27 status bit 0 integer 0 or 1
28 status bit 1 integer 0 or 1
29 status bit 2 integer 0 or 1
30 status bit 3 integer 0 or 1
31 status bit 4 integer 0 or 1
32 status bit 5 integer 0 or 1
33 status bit 6 - outdoor

readings invalid
integer 0 or 1

34 status bit 7 integer 0 or 1
35 data address 6-digit

hexadecimal
pointer to where in weather station's memory
data came from. Range is 000100 to
00FFF0. After reaching 00FFF0, returns to
000100 - i.e. a circular or ring buffer.

36 raw data 16 2-digit
hexadecimals

the raw data as it came from the weather
station

1, 2012-04-23 10:54:13, 2012-04-09 07:01:08, 5, 40, 21.6, ---, ---, ---, ---, 988.4, 1001.1, ---, ---,
---, ---, ---, ---, 291, 87.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0, 1, 0, 000160, 05 28 D8 00 FF FF
FF 9C 26 FF FF FF 86 23 01 40

Table 8: Weather Station data format in the Case St udy 2

6.2.3 CS3: Palazzina della Viola – Bologna
The CS3 is the used to deploy the ZigBee sensors developed in the task 4.3 [10]. The values of the
ZigBee sensors are stored in a log file. These are monthly files and there is a FTP Server where the
files are accessible. Thus, the data collector connects to the FTP, downloads the file and translates it.
The format of the file is exactly the same of the BMS readings because the ZigBee sensors are the
same (see ZigBee driver section).

6.2.4 CS5: Siegmair School – Innsbruck
Here, the CS5 have to be distinguished between before and after refurbishment because the sensor
network and, therefore, the files are not the same.

6.2.4.1 Before refurbishment

In the first step of the project, the monitoring system for the CS5 was deployed for the diagnosis of the
status of the building. The problem in this network is the lack of Internet connection. Therefore, the
application is not able to connect in order to download data logs. However, this information is shared
in the FTP Server on the CS7 in order to enable the reading of values from the Central Server. Thus,
all the files (notice the first monitoring phase is finished) are in the server. But, the complexity of the
application is the diversity of log files, although all of them txt files. These txt files are named in the
way, the application is able to know the sensor, place and the kind of measurements when naming the
variables.

First of all, for the measurements of the daylight and artificial light of the classrooms, a matrix is drawn
in the log file, as it is printed in the Table 9. In the first row and column, it is detailed the coordinate in
where the data-point is measured.

D4.4: Report on developed BMS system

 51

 0.00 0.92 1.84

0.00 109 170 245

0.91 142 198 266

Table 9: Light measurements in the classrooms for t he case study 5

For the measurement of the status of the entrance or windows side and lights, the format is quite
similar. The sensor offers several lines where the information is read. An example is in the Table 10
where the difficulties are related to filter the line which contains the measurement of the variables.

Number Date Time Line1 Line2 Line3

310 16.03.2011 08:36:40 - - 1

Table 10: Status measurements in the classrooms for the case study 5

For the remaining values such as thermal comfort and external measurements of temperature and
relative humidity the format is the same than the status. That is to say, all the files show a header
where the value measured can be found out. Mapping these headers and the readings, the application
is able to store the suitable value, units and sensor related.

6.2.4.2 After refurbishment

In the case after refurbishment the monitoring system has been modified. During this second
monitoring phase, the files format is .dat where the values are separated by spaces. Nevertheless,
that is not a standard; therefore, a treatment before storing the data is needed. In this case, the
spaces have been replaced by semicolon. Afterwards, it is necessary to know the meaning of every
field. Table 11 summarises the meaning of the data stream for the first 12 data-points (up to 88), being
a similar system than the CS8 one. It is displayed the device (measuring group), the channels of the
device, the device connected to the channel, the position of the sensor and the data-point number.

Measuring
group

Channel Device Kind of
sensor

Sensor position Value
number

R2a AB01 329 A1 0_0 ST Classroom 011 comfort level 0

A2 0_1 ST Classroom 012 comfort level 1

A3 0_2 ST Classroom 111 comfort level 2

A4 0_3 ST Classroom 214 comfort level 3

A5 1_0 AT Classroom 011 comfort level 4

A6 1_1 AH Classroom 011 comfort level 5

A7 1_2 AT Classroom 012 comfort level 6

A8 1_3 AH Classroom 012 comfort level 7

A9 2_0 AT Classroom 111 comfort level 8

A10 2_1 AH Classroom 111 comfort level 9

A11 2_2 ST Classroom 209 comfort level 10

A12 2_3 ST Classroom 209 comfort level 11

Table 11: CS5 after refurbishment data example

D4.4: Report on developed BMS system

 52

6.2.5 CS6: Warehouse City – Potsdam
The Case Study 6 does not offer an Internet connection. Therefore, the solution is taken like the
previous case studies. That means, the file is shared in the CS7 server and the collector connects via
FTP to that server in order to download the file before managing it. On the other hand the file is quite
easy to read because it offers a header where it is indicated the value position. So, the connector has
only to map the headers and the readings before storing the information. Yet, the headers are not
clear because the codes of the names, so, more explained information has to be provided. The Table
13 summarises the description of these codes needed for the naming of the variables measured in the
sensor network before storing the data.

 Jahr Monat Tag Stunde Ld_Q_Solar Q_Solar F_Messstr_OG_3 T_LSp_La1_5
2011 1 1 0 0.00 0.00 77.78 25.70

Table 12: Map of headers and values in the case stu dy 6

Sensor Position/
System

T Temperature _Solar Total solar system
Ttp dew point temperature _Solar_Lsp Solar system long-term memory

(storage)
Ta outside temperature
Toi Inside surface temperature _KW_Lsp water preheating Long-term

storage
Toe Surface temperature of the outside _Hkr_Lsp Heating circuits extraction Long-

term storage

F RH _Ofen leading water heater
 _EHP electric cartridge heater
L Power (measured directly)
Ld Power (the amount of energy derived

from the difference)
_Hkr heating circuits

 _H heating circuits
Q amount of energy _K cool

 _Zirku Circulation of hot water

 _EZ energy meters
 _Einsp feed PV system
 _PV PV system
 _Netz electricity municipal utility

Table 13: Code translation for the sensors in the c ase study 6

6.2.6 CS7: School of Industrial Engineering – Béjar
The case study 7 regarding the School of Industrial Engineering is the simplest one because the data
are already stored in a PostgreSQL database with the same format both in the names and in the table
scheme than the Central Server. The difference with regard the rest of the case studies is that the
communication is through a JDBC way, that is to say, using the Java drivers to communicate with a
SQL database. Thus, the data translator only reads the data with the help of SQL queries and directly
stores the information in the Central Server. The format of the information in the database is drawn in
the Table 14.

D4.4: Report on developed BMS system

 53

Table 14: Information format in the case study 7

6.2.7 CS8: Strickbau – Appenzell
In the case study 8, the data is .dat format separated by spaces. Each data row contains up to 244
values. Therefore, there is needed a translation before storing the values because the spaces are not
a standard divider. In this case, the spaces are changed with semicolon.

So as to know the meaning of every value, every value number is explained in the Table 15 (only the
first 12 data-points) where the measuring group is the device which has 12 channels, kind of sensor
(surface temperature, air temperature and air humidity in the example), the sensor connected to the
channel, position and the data-point number.

Meas
uring
group

Cha
nnel

Devi
ce

Kind of
sensor

Sensor
number

Sensor position Value
number

TH
AB01
403

A1 0_0 ST 684 ground level, room 0.2, Window 4,
Exterior window glass - east

0

A2 0_1 ST 663 ground level, room 0.2, window 4, interior
window glass - east

1

A3 0_2 ST 674 ground level, room 0.2Window 4/5, inside,
frame between windows - east

2

A4 0_3 ST 670 ground level, room 0.2, corner gap wall
room 0.2/0.3 - east

3

A5 1_0 AT 1044 ground level, room 0.2, Room Climate -
seating area 30 cm in front of windows 1/2

- east, 60 cm underneath ceiling - east

4

A6 1_1 AH 5

A7 1_2 AT 1109 ground level, room 0.2, climate between
the window glasses - east

6

A8 1_3 AH 7

A9 2_0 AT C1110 ground level, room 0.2, Room Climate
middle

8

A10 2_1 AH 9

A11 2_2 ST 686 ground level, room 0.2, Window 4, wall
under the window inside - east

10

A12 2_3 ST 682 ground level, room 0.2, Windows 2, Inside
on windowsill - east

11

Table 15: CS8 example of data

6.3 Application for monitoring and downloading data

All this data had to be available for all the partners in the project. Therefore, it has been developed a
very simple Web interface accessible through the Internet and based on the BMS main screen, which
shows a tab for each case study (Figure 30). Inside the case study, the list of devices in a stack panel

D4.4: Report on developed BMS system

 54

is drawn and the latest values associated with the device in the current month are printed. The only
exception is the CS7 because there is already a Web application accessible where both before and
after refurbishment data is available. In this case, the URL for accessing the Web interface is detailed
(Figure 31).

Figure 30: Monitoring interface for the Central Ser ver

Figure 31: CS7 tab in the Central Server Web interf ace

D4.4: Report on developed BMS system

 55

7 References

[1] Dr. Abdulmohsen Al-Hammad, “Building Management System (BMS)“, College of
environmental design, http://faculty.kfupm.edu.sa/ARE/amhammad/ARE-457-course-
web/Building-Management-System.pdf, last visited on 29th of April 2013.

[2] Cser, J.; Beheshti, R.; van der Veer, P., "Towards the development of an Integrated Building
Management System," Innovation in Technology Management - The Key to Global
Leadership. PICMET '97: Portland International Conference on Management and
Technology , vol., no., pp.740, 27-31 Jul 1997.

[3] I. Jacobson, The Unified Software Development Process, ser. Object technology series.
Pearson Education, 1999.

[4] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering Using U ML, Patterns,
and Java, 3rd ed. Upper Saddle River, NJ, USA: Prentice Hall Press, 2009.

[5] Velte, Anthony T. (2010). Cloud Computing: A Practical Approach. McGraw Hill, ISBN 978-0-
07-162694-1.

[6] Java. Learn About Java Technolog, http://www.java.com/en/about/, Java Web Site, last
visiteded 29th of April 2013.

[7] T. Lindholm, F. Yellin, G. Bracha, A. Buckley, “The Java® Virtual Machine Specification”, Java
SE7 Edition, 2013/02/28, http://docs.oracle.com/javase/specs/jvms/se7/html/, last visited 29th
of April 2013.

[8] OSGi. (2013) OSGi Alliance. http://www.osgi.org, OSGi framework Web Site, last visited 29th
of April.

[9] Spring Dynamic Modules 2009, http://www.springsource.org/osgi, Spring Dynamic Modules
Web Site, last visited 29th of April 2013.

[10] 3ENCULT, “WP4_D4.3_20140330_P13_Wireless Sensor Network Nodes”, March 2014.

[11] Google Web Toolkit, https://developers.google.com/web-toolkit/, GWT Web Site, last visited
29th of April 2013.

[12] PostgreSQL Global Development Group, http://www.postgresql.org/, PostgreSQL Web Site,
last visited 29th of April 2013.

[13] Oracle database, http://www.oracle.com/us/products/database/overview/index.html, Oracle
Web Site, last visited 29th of April 2013.

[14] SQL:2008 now an approved ISO international standard, Sybase, 2008-7,
http://iablog.sybase.com/paulley/2008/07/sql2008-now-an-approved-iso-international-
standard/, last visited 29th of April.

[15] ISO/IEC 9075-11:2008: Information and Definition Schemas (SQL/Schemata), 2008, p.1.

[16] Hibernate, http://www.hibernate.org/, Hibernate – Jboss Community Web Site, last visited 29th
of April 2013.

[17] Equinox OSGi, http://www.eclipse.org/equinox/, Equinox Eclipse OSGi Web Site, last visited
29th of April 2013.

[18] Apache Felix, http://felix.apache.org/, Apache Felix Web Site, last visited 29th of April.

[19] 3ENCULT, “WP4_D4.2_20140330_P23_Guideline for the implementation of monitoring
system”, March 2014.

[20] 3ENCULT, “WP4_D4.5_20140330_P23_ Report on Monitoring & Automation concept”, March
2014.

[21] M Bell, “SOA Modeling Patterns for Service Oriented Discovery and Analysis”, Wiley, January
2010, ISBN: 978-0-470-48197-4.

D4.4: Report on developed BMS system

 56

[22] World Wide Web Consortium, “Web Services Choreography Interface (WSCI) 1.0
Specification”, http://www.w3.org/, last visited 29th of April 2013.

[23] OSGi Alliance, “About the OSGi Service Platform” Technical Whitepaper, Revision 4.1 7, June
2007, http://www.osgi.org/wiki/uploads/Links/OSGiTechnicalWhitePaper.pdf.

[24] Java Simple Serial Connector, https://code.google.com/p/java-simple-serial-connector/,
Google code Web site, last visited September 2013.

